

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
 (Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \infty 1=10
$$

i) If X is normally distributed with zero mean and unit variable, then the expectation of X^{2}, is
a) 1
b) 0
c) 8
d) 2 .
ii) The maximum and minimum values for correlation coefficient are
a) 1,0
b) 2,1
c) $0,-1$
d) $1,-1$.
iii) If A and B are two events with $P(A)=0 \cdot 4$ $P(B)=0.3$ and $P(A \cap B)=0 \cdot 2$, then $P\left(A_{c}^{c} \cap B\right)$ is
a) $0 \cdot 1$
b) $0 \cdot 2$
c) $0 \cdot 3$
d) $0 \cdot 4$.
iv) 50 tickets are serially numbered 1 to 50 . One ticket is drawn from these at random. The probability of it being a multiple of 3 or 4 is
a) $\frac{12}{25}$
b) $\frac{6}{25}$
c) $\frac{18}{25}$
d) none of these.
v) The order of the pole $z=0$ of the function $\frac{\sin z}{z^{3}}$ is
a) 1
b) 2
c) 3
d) 4 .
vi) The value of $\int \frac{\mathrm{d} z}{z+3}$ (where C is a circle $|z|=1$) is C
a) 0
b) 1
c) 2
d) -1 .
vii) The condition for independence of two events A and B is
a) $\quad P(A \cap B)=P(A) P(B)$
b) $\quad P(A+B)=P(A)+P(B)$
c) $\quad P(A-B)=P(A) P(B)$
d) $\quad P(A \cap B)=P(A) P(B / A)$.
viii) The probability of the 4 children in a family having different birthdays is
a) 0.9836
b) 0.4735
c) 0.90
d) 0.757 .
ix) The mean of a uniform distribution with parameters a and b is
a) $b-a$
b) $b+a$
c) $\frac{a+b}{2}$
d) $\frac{b-a}{2}$
x) A random variable X has the following probability density function :

$$
f(x)=\left\{\begin{array}{cc}
2 x, & 0 \leq x \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

The value of $\operatorname{Var}(3-5 x)$ is
a) $\frac{1}{18}$
b) $\frac{25}{18}$
c) $\frac{12}{18}$
d) none of these.
xi) The number of significant figures in $0 \cdot 0130583$ is
a) seven
b) six
c) eight
d) five.
xii) The truncation error to compute the integration in Trapezoidal rule is of order
a) h
b) $\quad h^{2}$
c) $\quad h^{3}$
d) $\quad h^{4}$.

GROUP - B

Answer any three of the following. $3 \infty 5=15$
2. Show that $-1 \leq r_{x y} \leq 1$, for any bivariate data given by (x, y), where $r_{x y}$ is correlation coefficient of x and y.
3. In answering a question on a multiple choice test, a student either knows the answer or he guesses. Let p be the probability that he knows the answer and $1-p$ be the probability that he guesses. Assume that a student who guesses the answer will be correct with probability $\frac{1}{n}$. What is the conditional probability that a student knew the answer to a question given that he answered it correctly?
4. Define non-isolated essential singularity. Show that the function $f(z)=\cot \frac{1}{z}$ has a non-isolated essential singularity at $z=0$.
5. Prove that the following function is nowhere analytic
$f(x+i y)=\sqrt{|x y|}$.

6. Let a pair of dice be rolled 900 times and X denotes the number of times a total of 9 occurs. Find $P(80 \leq X \leq 120)$, given that $\phi(2 \cdot 1213)=0 \cdot 98$.
7. Use Lagrange's interpolation to find the value of $F(X)$ for $X=0$, given the following table :

$\boldsymbol{X}:$	-1	-2	2	4
$\boldsymbol{F}(\boldsymbol{X}):$	-1	-9	11	69

GROUP - C
Answer any three of the following. $\quad 3 \infty 15=45$
8. a) Two persons A and B throw alternatively with a pair of dice. A wins if he throws 6 before B throws 7 and B wins if he throws 7 before A throws 6 . If A begins, find his probability of winning.
b) The probability of a bomb hitting a target is $\frac{2}{5}$. Four direct hits are necessary to destroy a bridge completely. If 6 bombs are aimed at the bridge, what is the probability that the bridge will be desroyed?
c) State and prove Baye's theorem. $5+5+5$

CS/M.TECH (ECE)/SEM-1/MVLSI-101/2010-11

9. a) In a certain factory blades are manufactured in packets of 10 . There is a 0.2% probabiliity for any blade to be defective. Using Poisson distribution calculate approximately the number of packets containing two defective blades in a consignment of 20,000 packets.
($e^{-0.02}=0.9802$)
b) If the equations of two Regression lines obtained in a correlation analysis are $3 x+12 y-19=0$ and $9 x+3 y=46$, determine which one is regression equation of y on x and which one is the regression equation of x on y. Find the means of x on y and correlation coefficient between x and y.
c) In a normal distribution, 31% of the items are under 45 and 8% are above 64 . Find the mean and standard deviation. Given that $P(0<Z<1.405)=0.42$ and $P(-$ $0 \cdot 496<Z<0$) $=0 \cdot 19$. $5+5+5$
10. a) Determine the largest eigenvalue and the corresponding eigenvector of the matrix :

$$
A=\left(\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

b) Compute $\sqrt[3]{2}$ using Newton-Raphson method correct up to 4 significant figures.
c) Find by suitable interpolation formula the value of y for $x=0.05$ from the following data :

$\mathbf{X}:$	0.00	0.10	0.20	0.30	0.40
$\mathbf{Y}:$	1.000	1.2214	1.4918	1.8221	2.2255

$5+5+5$
11. a) Evaluate $\int \frac{4-3 z}{(z-1) z(z-3)} \mathrm{d} z$, where C is the circle $|z|=\frac{5}{2}$.
b) Show that $u(x, y)=x^{3}-3 x y^{2}$ is harmonic in C and find a function $v(x, y)$ such that $f(z)=u+i v$ is analytic.
c) Use residue theorem to evaluate
$\int \frac{3 z^{2}+z-1}{\left(z^{2}-1\right)(z-3)} \mathrm{d} z$, around the circle $|z|=2$.
C

$$
5+5+5
$$

12. a) Use dynamic programming to solve

Minimize

$$
Z=y_{1}^{2}+y_{2}^{2}+y_{3}^{2}
$$

subject to $\quad y_{1}+y_{2}+y_{3} \geq 15$

$$
\text { and } \quad y_{1}, y_{2}, y_{3} \geq 0
$$

b) Find the maximum value of $x^{3} y^{2}$ subject to the constraint $x+y=1$, using the method of Lagrange's multiplier. $7+8$
13. a) Solve

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}} \quad, x>0, t>0
$$

 if $u(0, t)=0, u(x, 0)=e^{-x}, x>0, u(x, t)$ is unbounded.
b) If $f(z)=u+i v$ is an analytic function and $z=r e^{i \theta}$ where u, v, r, θ are all real. Show that the CauchyRiemann equations are $\frac{\partial u}{\partial r}=\frac{1 \partial v}{r \partial \theta}$ and $\frac{\partial u}{\partial \theta}=-r \frac{\partial v}{\partial r}$.
c) Find the bilinear transformation which maps the points $z=1, i,-1$ into the point $w=i, 0,-i$.

$$
6+5+4
$$

