
 Name :
 Roll No.
 \qquad \& Invigilator's Signature :
 \qquad
 CS/M.TECH (ECE)/SEM-1/MVLSI-101/2011-12 2011

 ADVANCED ENGINEERING MATHEMATICS

 ADVANCED ENGINEERING MATHEMATICS}

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
(Very Short Type Questions)

1. Answer any five of the following questions:
a) Evaluate $1-e^{-h D} \int$
b) If $\frac{4}{3}$ is represented by the approximate number $1 \cdot 3333$, compute absolute, relative and percentage errors.
c) The p.d.f. of a random variable X is

$$
f(x)=c x^{2} \quad, 0 \leq x \leq 1
$$

Find (i) c
(ii) $P\left(0 \leq x \leq \frac{1}{2}\right)$.
d) State Beltrami's Identity.
e) State Bayes' Theorem.
f) Distinguish between mutually exclusive events and independent events with an example.
h) State two different situations where classical definition of probability fails.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. $3 \times 5=15$
2. Two urns contain respectively 2 red, 5 black, 7 green and 1 red 4 black, 9 green balls. One ball is drawn from each urn. Find the probability that both the balls are of the same colour.
3. Find the singularities of the function $f(z)=\sec \frac{1}{z}$ in the finite z-plane and give the nature of singularities.
4. Find the mean and variance of Binomial distribution.
5. Assuming that the height distribution of a group of men is normally, find the mean and standard deviation, if 84% of the men have heights less than $65 \cdot 2$ inches and 68% have height lying between $65 \cdot 2$ and $62 \cdot 8$ inches.
6. Find for which values of x the following function is maximum and minimum ?

$$
f(x)=\frac{x^{2}+x+1}{x^{2}-x+1}
$$

GROUP - C

(Long Answer Type Questions)
Answer any three of the following. $3 \times 15=45$
7. State and prove 'Euler-Lagrange' equation.
8. a) Define $f: \mathbb{C} \varnothing \mathbb{C}$ by $f(z)=|z|^{2}$. Is it differentiable at (0,0) ? Is it analytic at (0,0)? 5
b) Consider the function f defined as

$$
f(z)=\left\{\begin{array}{cc}
x y(y-i x), & \text { for } z \neq 0 \\
0, & \text { for } z=0
\end{array}\right.
$$

Show that f satisfies $C-R$ Equation at the origin, but it is not analytic there.
c) If f is analytic on a domain $S \subseteq C$. Prove that

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}
$$

9. a) Using Newton's divided difference formula evaluate $f(8)$, given that

$\boldsymbol{x}:$	4	5	7	10	11	13
$\boldsymbol{f}(\boldsymbol{x}):$	48	100	294	900	1210	2028

b) Find the smallest positive root of the equation
$3 x^{3}-9 x^{2}+8=0$, correct up to four decimal places, using Newton-Raphson method.
c) Use Runge-Kutta method of the fourth order to find $y(0,1)$, given that

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{x+y}, y(0)=1 . \tag{5}
\end{equation*}
$$

10. a) If $F[y(x)]=\int^{b} \sqrt{1+\left[y^{\prime}(x)\right]^{2}} \mathrm{~d} x$, then using a
Euler Lagrange's equation prove that the solution is a straight line.

CS/M.TECH (ECE)/SEM-1/MVLSI-101/2011-12
b) Find the minimum value of $x^{2}+y^{2}+z^{2}$, subject to the condition $2 x+3 y+5 z=30$, using Lagrange's method of undetermined multipliers.
11. a) Find numerically the largest eigenvalue and the corresponding eigenvector of the matrix
$A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & -4 & 2 \\ 0 & 0 & 7\end{array}\right]$, by Power Method and hence find
the remaining eigenvalues.
7
b) Find the inverse of the matrix $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 3 & 2 & 3 \\ 1 & 4 & 9\end{array}\right]$ by

Gaussian method.
12. a) Prove that

$$
\int \bar{z}|z| \mathrm{d} z=r^{3} \pi i
$$

L
where L is the curve consisting of the half-circle $z=r e^{i e}, 0 \leq t \leq \pi$ and the straight line segment $-r \leq \operatorname{Re}(z) \leq r, \operatorname{lm}(z)=0$.
b) Evaluate :

$$
\int \frac{\mathrm{d} z}{z^{2}+1}
$$

C
Where C is the circle (i) $|z+i|=1$, (ii) $|z-i|=1 . \quad 5$
c) Find Laurent series corresponding to the function

$$
f(z)=\frac{e^{z}}{z-z^{2}}
$$

That converges for $0<|z|<R$ and determine its precise region of convergence.

