mistime ofticition
 vise
 Name :
 Roll No.
 \qquad ~
 Invigilator's Signature :
 \qquad
 CS/M.TECH (ECE-OLD)/SEM-1/MCE-101/2011-12 2011 ADVANCED ENGINEERING MATHEMATICS AND STATISTICS

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.

Answer Q. No. 1 and any four questions from the rest.

1. Answer the following questions :
$7 \times 2=14$
a) Define universal set and a complement of a given set with examples.
b) How does the difference equation,
$u_{x+2}-(a+b) u_{x+1}+a b u_{x}=0$,
arise from the relation $U_{x}=A a^{x}+B b^{x}, A$ and B being two arbitrary constants ?
c) Describe singular point of a complex function and the concept of its poles.
d) If $w=f(z)=u(x, y)+i v(x, y)$ be ananalytic function is some region of the z-plane, then show that
${ }^{2} u={ }^{2} v=0$.
e) Write down the form in which Newton's formula for forward interpolation is usually written for a function $y=\phi(x)$.
f) Describe the classical definition of probability and discusss its limitation.
g) Explain the measure of central tendency of frequency distribution.
2. a) If a finite set has n elements, then prove that it has 2^{n} subsets.
b) Prove that $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.

$$
6+8
$$

3. a) Determine the analytic function whose real part is

$$
x^{3}-3 x y^{2}+3 x^{2}-3 y^{2}+2 x+1
$$

b) Show that $\int \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)^{2}(z-2)} \mathrm{d} z=4(\pi+1) i$,
c where c is the circle, $|z|=3$.
4. a) Find Newton's formula for forward interpolation in terms of x.
b) From the table given below, calculate $\phi(1,2)$ correct to two decimal places.

$\boldsymbol{X}:$	0	1	2	3	4
$\phi(\boldsymbol{x}):$	$1 \cdot 00$	$1 \cdot 50$	$2 \cdot 20$	$3 \cdot 10$	$4 \cdot 60$

5. a) Find the extremal of the function $\int_{0}^{x^{3}} \frac{y^{2}}{}$

$$
x_{0}
$$

b) Discuss Lagrange's multiple method to solve constrained problems of optimization. $6+8$
6. a) The sum of two non-negative quantities is equal to $2 n$. Find the probability that their product is not less than $\frac{3}{4}$ times their greatest product.
b) Find the mean age from the following distribution :

Age in years :	$15-19$	$20-24$	$25-29$	$30-34$	$35-39$	$40-44$
	No. of persons :	37	81	43	24	9
6						

$$
7+7
$$

7. a) Define residue of a function $f(z)$ at its singularity z_{0}. Assuming Laurent's expansion of $f(z)$ in the neighbourhood of z_{0}, find its residue at z_{0}.
b) Determine the poles and residues of the function :

$$
F(z)=\frac{1}{z^{4}+2 z^{2}+1}
$$

