Name :	<u> </u>
Roll No. :	A dawn (Y Ramining and Excland
Invigilator's Signature :	

CS/M.TECH (ECE-OLD)/SEM-1/MCE-101/2011-12 2011 ADVANCED ENGINEERING MATHEMATICS AND STATISTICS

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks.

Answer Q. No. 1 and any *four* questions from the rest.

- 1. Answer the following questions : $7 \times 2 = 14$
 - a) Define universal set and a complement of a given set with examples.
 - b) How does the difference equation,

 $u_{x+2} - (a+b)u_{x+1} + abu_x = 0,$ arise from the relation $U_x = Aa^x + Bb^x$, A and B being two arbitrary constants ?

c) Describe singular point of a complex function and the concept of its poles.

40213 (O)

[Turn over

- d) If w = f(z) = u(x, y) + iv(x, y) be an analytic function is some region of the z-plane, then show that $u^2 u = v^2 v = 0.$
- e) Write down the form in which Newton's formula for forward interpolation is usually written for a function $y = \phi(x)$.
- f) Describe the classical definition of probability and discusss its limitation.
- g) Explain the measure of central tendency of frequency distribution.
- a) If a finite set has *n* elements, then prove that it has 2ⁿ subsets.

b) Prove that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

6 + 8

3. a) Determine the analytic function whose real part is

$$x^3 - 3xy^2 + 3x^2 - 3y^2 + 2x + 1.$$

b) Show that
$$\int \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)^2 (z-2)} dz = 4 (\pi + 1) i,$$

where *c* is the circle, |z| = 3. 7 + 7

- 4. a) Find Newton's formula for forward interpolation in terms of *x*.
 - b) From the table given below, calculate ϕ (1, 2) correct to two decimal places.

<i>X</i> :	0	1	2	3	4
φ(x):	1.00	1.50	2.20	3.10	4.60

8 + 6

40213 (O)

- b) Discuss Lagrange's multiple method to solveconstrained problems of optimization.6 + 8
- 6. a) The sum of two non-negative quantities is equal to 2n. Find the probability that their product is not less than $\frac{3}{4}$ times their greatest product.
 - b) Find the mean age from the following distribution :

Age in years :	15-19	20-24	25-29	30-34	35-39	40-44
No. of persons :	37	81	43	24	9	6

7 + 7

- 7. a) Define residue of a function f(z) at its singularity z_0 . Assuming Laurent's expansion of f(z) in the neighbourhood of z_0 , find its residue at z_0 .
 - b) Determine the poles and residues of the function :

$$F(z) = \frac{1}{z^4 + 2z^2 + 1} \quad . \qquad 7 + 7$$

40213 (O)

5.

a)

[Turn over