|                           | <u>Unean</u>                        |
|---------------------------|-------------------------------------|
| Name :                    | 4                                   |
| Roll No.:                 | A Agency (Vi Soundary and Excitate) |
| Invigilator's Signature : |                                     |

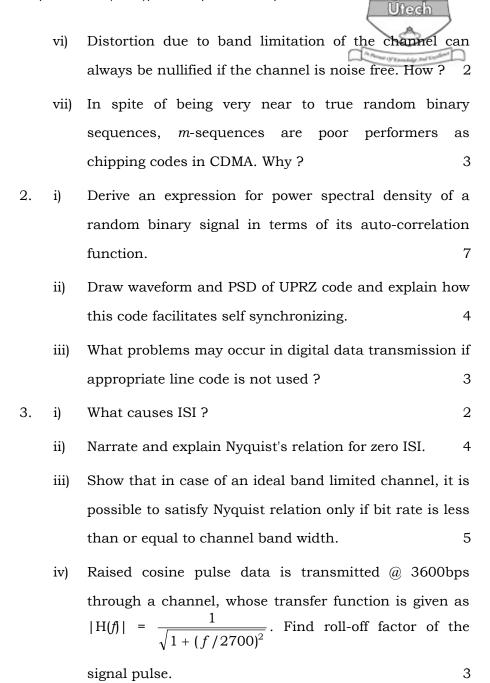
## CS/M.TECH (ECE)/SEM-1/MCE-102/2010-11

## 2010-11 ADVANCED DIGITAL COMMUNICATION

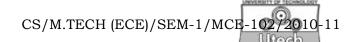
Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

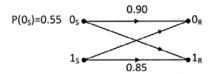
Candidates are required to give their answers in their own words as far as practicable.


Answer Question No. 1 and any other four from the rest.

- 1. i) In which part of a communication system is an 'optimum filter' used?
  - ii) Distinguish between orthogonal and orthonormal signals.
  - iii) 'Power spectrum of any periodic signal is discrete'.


    Why?
  - iv) What is cross-correlation power?
  - v) When a large number of noises affect a channel, the effective combined noise will be nearly Gaussian even if the individual noises are not so. Why?

40208 [ Turn over


## CS/M.TECH (ECE)/SEM-1/MCE-102/2010-11



40208



- 4. i) When a channel is called a symmetric channel? 2
  - ii) A priori and transition probabilities in a binary channel are given. Apply optimum receiver algorithm and determine total probability of error.



- iii) What causes MAI in CDMA?
- iv) What is 'near-far' problem in DSSS modulated communication and why is it absent in FHSS system?

4

[ Turn over

2

- 5. i) Establish that direct sequence spread spectrum modulation reduces effective power of a jamming signal by a factor equal to the length of chipping code.
  - ii) What are the desired characteristics of a binary sequence for use as chipping code?
  - iii) Why does FHSS modulation need more stringent error control coding?
- 6. i) Establish a general expression of bit error rate in a binary base band receiver in terms of a priori and transition probabilities of signals.
  - ii) Determine the probability of bit error due to an integrate-and-dump filter for rectangular antipodal signalling in a Gaussian channel.

40208 3

## CS/M.TECH (ECE)/SEM-1/MCE-102/2010-11

- iii) A PNRZ binary signal of  $\pm$  1V is corrupted by a Gaussian noise of power spectral density  $10^{-4}$  V<sup>2</sup>/Hz. The received signal is processed by an 'integrate and dump' type filter. What should be the minimum rate of transmission so that the probability of bit error does not exceed  $10^{-4}$ ? Given erfc (2.63) =  $2 \times 10^{-4}$ .
- 7. Write short notes on any two:

 $2 \times 7$ 

- Kasami sequence and its suitability as chipping code in CDMA
- ii) Raised cosine pulse signal.
- iii) Wide sense stationary signal

40208 4