	Utech
Name :	
Roll No.:	To Alican (1/ Konnining 2nd Excitors)
Invigilator's Signature :	

CS/M.Tech(ECE)/SEM-1/MCE-103/2009-10 2009

ADVANCED COMMUNICATION SYSTEM

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer question No. 1 and any four from the rest.

- 1. a) Why are both source coding and channel coding necessary in digital communication systems?
 - b) GSM can be treated as a system with TDMA/FDMAmultiple access scheme Justify.2
 - c) If $1\cdot 2$ μ sec is the delay spread for a multi-path signal, what does this numerical value indicate? If the surrounding object for a mobile receiver move fast, what effect would dominate small scale fading? If V_s = velocity of source & V_r = velocity of the receiver, how these two parameters are related to account for Doppler Shift?

920453 [Turn over

CS/M.Tech(ECE)/SEM-1/MCE-103/2009-10

- d) Small scale fading models are defined by two parameters. If one is distance, what is the other? What are the order of magnitudes of these two parameters? For a mobile receiver, even if the movement is small, what is the order of variation of the received signal in decibels? Why so?
- 2. a) What is 'cross-over' distance? Deduce the expression for this distance.
 - b) Assume that a receiver is located at 10 kms. from a 50 W transmitter. The carrier frequency is 900 MHz, free space propagation is assumed and $G_t = 1$, $G_r = 2$. Determine (i) the power at the receiver; (ii) the magnitude of the *E*-field at receiver antenna; (iii) the rms voltage applied to the receiver input assuming that the receiver antenna is purely resistive with an impedance of 50 ohms and is matched to receiver.

2 + 3 + 2

- c) Compare FDMA and TDMA techniques in terms of synchronization and fading.3
- 3. a) Draw the block diagram of a typical GSM architecture and state the operations of (i) AUC ; (ii) GMSC ; (iii) BSC and (iv) $A_{\it bis}$ interface. 5 + 4
 - b) Prove mathematically that the number of cells, N in a cluster in a cellular network is given by:

 $N = i^2 + ij + j^2$, where i and j have their usual meanings.

- 4. a) How does OFDM differ from FDMA? Give the mathematical expression for orthogonal sub-carriers in OFDM.
 - b) Generate the transceiver structures for OFDM using (i) analog technology and (ii) IFFT transformation. Explain the generation with the help of necessary equations. 3+3+5
- 5. a) "A Cordless Telephone is a Limited Mobility Telephone".

 Justify this statement & compare its performance with a

 GSM set. What type of modulation scheme is employed
 for these?

 3 + 1
 - b) Fidelity of a signal indicates a very important performance aspect of a Radio Receiver. Explain this aspect. What impact does it have on the Digital Modulation techniques used in mobile communication ? 2+2
 - c) Explain the fundamentals of Channel Coding in Digital Modulation schemes. What are the basic purposes of introducing error detection and error correction techniques? What are the fundamentals of Block Codes? 3+2+2
- 6. a) Coherence Bandwidth & Coherence Time are two parameters used in connection with improving system performance in Fading Radio Channels using a Technique having three options. Explain this Technique.6

CS/M.Tech(ECE)/SEM-1/MCE-103/2009-10

- b) In a GSM system, the TDMA / FDD system uses
 25 MHz for the forward link, which is broken into radio channels of 200 kHz. If 8 speech channels are supported on a single radio channel and no guard band is assumed, find the number of simultaneous users that can be accommodated in GSM.
- c) Some parameters are very important to be considered while designing an indoor propagation model for mobile transmission. Inside buildings with varied décor.
 Explain these parameters highlighting the special features.
- 7. a) Spread spectrum technique is used for CDMA technology. What are its special features that as made this extremely useful in aspects like noise reduction.
 Explain this scheme.
 - b) A CDMA scheme has got certain distinct advantage over GSM. Highlight some important distinctive features. What is a RAKE receiver? 3+2
 - c) A total of 33 MHz bandwidth is allocated to a particular FDD cellular telephone system, which uses two 25 kHz simplex channels to provide full duplex voice and control channels. Compute the number of channels available per cell if a system uses (i) 7 cell reuse (ii) 12 cell reuse.

920453