	/ Ulegh
Name :	
Roll No.:	As the part of Commission and Comment
Inviailator's Signature :	

CS/M.Tech (ECE)/SEM-1/MCE-103/2012-13

2012 ADVANCED DIGITAL SIGNAL PROCESSING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer question 1 and any four questions from the rest.

- 1. a) What is Inverse System ? Explain with suitable example.
 - b) Write down the applications of Cepstrum.
 - c) Define minimum phase and maximum phase system with proper examples.
 - d) Write down the advantages of FIR filter with respect to IIR counterpart.
 - e) State Parseval's energy and power relations.
 - f) Consider the system $y(n) = 0.9 \ y(n-1) + bx(n)$. Determine b so that |H(0)| = 1.
- g) What is Homomorphic Deconvolution? 7×2 40201 Turn over

CS/M.Tech (ECE)/SEM-1/MCE-103/2012-13

- 2. a) Determine the energy density spectrum $S_{xx}(\omega)$ of the signal $x(n) = a^n u(n)$, -1 < b < 1. Sketch the above sequence assuming a = 0.8 and corresponding energy density spectrum $S_{xx}(\omega)$
 - b) Determine the fourier transform of the signal $x(n) = b^{|n|}, -1 < b < 1.$
 - c) State Correlation theorem of Fourier transform. 2
- 3. a) Consider the FIR filter y(n) = x(n) x(n-4). Sketch its magnitude and phase response. Hence find the response of the system to input $x(n) = \cos\left(\frac{\pi}{2}n\right) + \cos\left(\frac{\pi}{4}n\right), -\infty < n < \infty.$ 4 + 4
 - b) Determine the steady-state and transient response of the system $y(n) = \frac{1}{2} [x(n) x(n-2)]$ to the input signal $x(n) = 5 + 3 \cos \left(\frac{\pi}{2}n + 60^{\circ}\right), -\infty < n < \infty$
- 4. a) The system $y(n) = \frac{1}{2}y(n-1) + x(n)$ is excited with the input $x(n) = \left(\frac{1}{5}\right)^n u(n)$. Determine the sequences $r_{xx}(1), r_{hh}(1), r_{xy}(1)$ and $r_{yy}(1)$. 4×2.5
 - b) Determine the impulse response of a causal system which produces the response $y(n) = \begin{cases} 1 & -1 & 3 & -1 & 6 \end{cases}$ when excited by the input signal $x(n) = \begin{cases} 1 & 1 & 2 \end{cases}$

40201

CS/M.Tech (ECE)/SEM-1/MCE-103/2012-13

- 5. a) What is Multirate Digital Signal Processing? Write down few of its applications. 2 + 2
 - b) A discrete-time signal x (n) is passed through a decimator with decimation factor L. Evaluate the frequency response of the decimator output signal y (n).
 - c) Why are images produced during upsampling operation?
- 6. a) Explain with suitable diagram the operation of Quadrature Mirror Filter Bank.
 - b) Derive the expression of Distortion and Aliasing transfer function and establish the conditions of near perfect reconstruction.
 - c) How efficient poly-phase structure of interpolator is obtained? Explain with proper figure. 3
- 7. Write down the short notes on any *four* topics : $4 \times 3\frac{1}{2}$
 - a) Discrete Time Fourier Series
 - b) Relationship between correlation and convolution
 - c) Parametric method for power spectrum estimation
 - d) Continuous wavelet transform
 - e) Deconvolution
 - f) Region of convergence (ROC).