

CS/M.Tech (ECE)/SEM-1/MCE-102/2012-13 2012

ADVANCED DIGITAL COMMUNICATION

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 and any four from the rest.

1. Answer any seven of the following :
a) Define central limit theorem. What is its significance ?
b) Calculate the minimum sampling rate of the signal $x(t)=10 \cos (200 \pi t)+5 \cos (400 \pi t)$ in order to avoid aliasing.
c) Draw the Manchester coding and PNRZ coding for binary data"110001".
d) State Parseval's theorem for power signal.
e) What do you mean by random variable and random process ?
f) What are the desirable properties of line codes ?
g) What is white noise ? Draw its power spectral density and autocorrelation function.
h) What are the properties of maximal-length PN sequences?

i) What do you mean by symbol error rate and bit error rate ?

j) What is the difference between convolution and correlation function?
2. Answer any four of the following :
$4 \times 14=56$
a) Describe the operation of direct sequence spread spectrum with BPSK modulation. 5
b) Derive the bit error probability of asingle tone interference with direct sequence spread spectrum. 5
c) A spread spectrum system has the following parameters :

Message bit rate $\left(f_{b}\right)=3 \mathrm{kbps}$
PN sequence chip rate $\left(f_{c}\right)=3072 \mathrm{kbps}$
If error probability (pe) $\leq 10^{-5}$, find out processing gain and jamming margin.
Given, $x=10$ if erfc $\sqrt{x}=2 \times 10^{-5} \quad 2+2$
3. a) Derive the Nyquist criterion for zero inter symbol interference?
b) What are the limitations of above criterion ?
c) Abinary digital with PNRZ signalling is passed through a communication system with raised cosine filter characteristic $\alpha=0.25$. If bit rate is 64 kbps then find the transmission bandwidth.
d) The binary data 0010110 are applied to the input of a duobinary system. Construct the duobinary coder output and corresponding receiver output without precoding. Consider the first bit to be a startup digit, not a part of data. $3+2$

4. a) Deduce the impulse response of a matched matched filter.
b) Consider a rectangular pulse $x(t)$ of amplitude A and duration T sec. Show that the maximum signal to noise ratio for matched filter is $2 \mathrm{E} / \eta$. Where E is the signal energy and $\eta / 2$ is the white noise power spectral density.
c) In a binary transmission, a rectangular pulse is represented by

$$
x(t)=\left\{\begin{array}{l}
A \text { for } 0<t<T \\
0 \text { for otherwise }
\end{array}\right.
$$

Sketch the impulse response and output of the matched filter. $3+2$
5. a) A BPSK signal is represented by $\mathrm{S}(t)=b(t) \sqrt{2 P} \cos$ $\left(2 \pi f_{c} t+\theta\right)$ where $b(t)$ is a rectangular pulse of amplitude $\pm \mathrm{A}$ and of duration T_{b}. Deduce the PSD function of modulating signal and modulated signal and corresponding spectrum. Draw the signal space diagram and estimate the bandwidth of BPSK signal.

$$
3+2+1+1+1+1
$$

b) For a BFSK signal find bit error rate.

Given, the power spectral density of white noise $\frac{\eta}{2}=10^{-10}$ watt $/ \mathrm{Hz}$, amplitude of carrier $=1 \mathrm{mV}$ at receiver input and frequency of baseband NRZ signal $f_{b}=1 \mathrm{KHz}$.
6. a) Prove that power spectral density function of a signal and its autocorrelation forms a Fourier transform pair.
b) A random binary pulse train is shown below Abinary 1 is transmitted by a positive pulse and a binary θ is transmitted by the negative pulse. Assume that two symbols are equally likely and occur randomly. Determine the autocorrelation function and power spectral density of the signal. $2+2$

c) A fair coin is tossed four times in succession. If a random variable X is defined as the number of heads appear in a trial, determine cumulative distribution function $F_{x}(x)$ and probability density function $f_{x}(x)$ of the random variable X. $3+2$
7. a) What do you mean by stationary random process and wide sense stationary random process ?

3
b) Explain the Gram-Schmidt procedure to represent an arbitrary function into an orthonormal set of functions.

6
c) Two functions $x_{1}(t)$ and $x_{2}(t)$ are shown below. Express the functions in terms of orthonormal components using Gram-Schmidt procedure.

