	/ Utech
<i>Name</i> :	
Roll No.:	
Invigilator's Signature :	

CS/M.Tech(ECE)/SEM-1/MCE-102/2012-13 2012

ADVANCED DIGITAL COMMUNICATION

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Short Answer Type Questions)

1. Answer any *five* of the following.

- $5 \times 2 = 10$
- a) A random variable X has a PDF given by $f_X(x) = \frac{1}{\sqrt{8\pi}} \exp\left(-\frac{(x+3)^2}{8}\right). \text{ Express } P(X>4) \text{ in terms of } Q\text{-function.}$
- b) A random variable X has mean 50 and standard deviation 8. Find the maximum value of $P(|X-50| \ge 30)$ from Chebyshev's inequality.
- c) State Central Limit Theorem.
- d) Differentiate between FSK and CPFSK modulation techniques.

41234 Turn over

CS/M.Tech(ECE)/SEM-1/MCE-102/2012-13

- e) Explain what you mean by a stationary random process.
- f) In a base band 16-PAM system, a unit pulse of duration2 ms is used. Find the average energy per symbol.

GROUP - B (Long Answer Type Questions)

Answer any *four* of the following. $4 \times 15 = 60$

2. a) Define the following:

2 + 2

- i) Wide sense stationary (WSS) process
- ii) Ergodic process.
- b) A random process Y(t) is obtained by modulating a carrier with another random process X(t) and is given by $Y(t) = X(t) \cos \left(\omega_0 t + \Theta \right)$ where Θ is uniformly distributed over $[0, 2\pi]$ and independent to X(t). Show that Y(t) will be a WSS process if X(t) is a WSS process.
- c) A random process X(t) is defined as X(t) = A sin \b($\omega_0 t + \Theta$) where Θ is uniformly distributed over $[0, 2\pi]$. Test whether this process is ergodic or not.
- 3. Four signals, $s_0(t)$, $s_1(t)$, $s_2(t)$ and $s_3(t)$ are defined as follows:
 - a) $s_0(t) = \exp(-t) u(t)$
 - b) $s_1(t) = \exp(-2t) u(t)$
 - c) $s_2(t) = \exp(-3t) u(t)$
 - d) $s_4(t) = \exp(-4t) u(t)$.

Derive a set of orthonormal basis signals by graham-Schmidt's orthogonalization procedure.

41234

CS/M.Tech(ECE)/SEM-1/MCE-102/2012-13

- 4. a) A random variable X is uniformly distributed over [0,1]. Find the distribution of $Y = \exp((1-X))$.
 - b) Explain in detail's how FSK signals are generated from multidimensional signalling scheme.5
 - c) Derive the expression for the minimum distance between two adjacent signal points in PSK modulation scheme involving M symbols and a carrier signal pulse $g\left(t\right)$ of energy E_{g} .
- 5. a) Explain in detail, the CPFSK modulation scheme and how MSK signals can be derived from binary CPFSK signals.5 + 3
 - b) Derive the expression of the power spectral density of linearly modulated signals.7
- 6. a) Discuss about the functionality of a MAP detector. Explain when a MAP detector becomes equivalent to an ML detector. 3+2
 - b) Derive the expression of error probability for optimal detection of binary antipodal signalling.
 - c) Explain the working priciple of correlation receiver. How are matched filters derived from correlation receiver? 3+2