

Invigilator's Signature : \qquad

CS/M.Tech(CT)/SEM-1/M(CT)-101/2010-11
 2010-11
 ADVANCED ENGINEERING MATHEMATICS

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any five of the following.

1. a) Find the integral surface satisfying the p.d.e. $(x-y) p+(y-x-z) p=z$ and passing through the circle $x^{2}+y^{2}=1, z=1$
b) Solve the name equation $\frac{\partial^{2} \mu}{\partial t^{2}}=c^{2} \frac{\partial^{2} \mu}{\partial x^{2}}$ given that

$$
\begin{aligned}
\mu(0, t) & =\mu(l, t)=0 \\
\mu(x, 0) & =f(x) \\
\text { and } \frac{\partial \mu}{\partial t}(x, 0) & =0 \quad 0<x<l \quad 7+7
\end{aligned}
$$

2. a) If A and B are two events, then using the axioms of the probability from that

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B) .
$$

b) If A and B are independent events, then show that A and \bar{B} are also independent.
c) Let X have a p.d.f. defined by

$$
\begin{aligned}
f(x) & =k x(1-x) & & 0 \leq x \leq 4 \\
& = & & 0
\end{aligned}
$$

determine the constant k and the mean of $(1-2 x)$.

$$
4+4+6
$$

3. a) Find the Fourier cosine transform of the function $f(x)=e^{-x}$ and level find

$$
\int_{0}^{\bullet} \frac{\operatorname{cs} \lambda x}{1+\lambda^{2}} \mathrm{~d} \lambda
$$

b) If Fourier transform of $f(x)$ is given by

$$
F\{f(x)\}=F(s)=\dot{\int} f(x) e^{i s x} \mathrm{~d} x
$$

then prove that
i) $\quad F\{f(a x)\}=\frac{1}{a} \quad F\left(\frac{s}{a}\right)$ where $a \neq 0$
ii) $\quad F\{f(x-a)\}=e^{i s x} F(s)$
$6+4+4$
4. a) Show that the iteration given by

$$
x_{n+1}=\frac{1}{\sqrt{x_{n}+1}}
$$

converges to the root lying in $[0,1]$ for the equation $x^{3}+x^{2}-1=0$. Find out the value of above mentioned root correct upto 3 decimal places.
b) Discuss Newton-Raphson's method for determining a real simple root of the equation $f(x)=0$ and use this to form an iteration formula to find out positive square root of a real positive number N.

Hence find out the value of $\sqrt{3}$ correct upto 2 decimal places.
5. a) Use Müller's method to find out a root of the equation $\cos x=x e^{x}$ in $[0,1]$
(perform one iteration by choosing three initial approximations to the root as $-1,0,1$).
b) Decompose the matrix

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 5 & 2 \\
3 & 1 & 5
\end{array}\right]
$$

into $L U$ form where L and U are lower triangular and upper triangular matrices respectively.

Hence, solve the system of equations

$$
\begin{aligned}
& x_{1}+2 x_{2}+3 x_{3}=14 \\
& 2 x_{1}+5 x_{2}+2 x_{3}=18 \\
& 3 x_{1}+x_{2}+5 x_{3}=20
\end{aligned}
$$

$$
6+8
$$

6. a) State a set of sufficient conditions for convergence of Gauss-Siedel iteration for solving a set of linear equations and use this method to solve the following system correct upto 2-decimal places

$$
\begin{aligned}
& 54 x+y+z=110 \\
& 2 x+15 y+6 z=72 \\
& -x+6 y+27 z=85
\end{aligned}
$$

b) Solve $\frac{\mathrm{d} y}{\mathrm{~d} x}=x(1+y)$ along with $y(1)=1$ for finding out the value of $y(1 \cdot 1)$ by using Modified Ruler's method, correct upto two places of decimal (use step length $h=0.05$)
7. a) Find the value of $y(1 \cdot 1)$ by using 4 th order RungeKarfta method for the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\lambda-y \text { with } y(1)=1
$$

(use the step length of $h=0.05$).
b) Use the method of steepest descent to minimise the function
$f\left(x_{1}, x_{2}\right)=x_{1}-x_{2}+2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}$
starting from the point $x_{1}=\binom{0}{0}$
(perform one iteration).
c) Describe Monte Carlo approach for finding out approximate value of the integral

$$
\int_{a}^{b} f(x) \mathrm{d} x \quad 5+5+4
$$

