
 Name :
 Roll No.
 \qquad Invigilator's Signature :
 CS/M.Tech (CSE)/SEM-3/CST-631/2009-10 2009
 SOFT COMPUTING

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 and any four from the rest.

1. a) Consider a universe of aircraft speed near the speed of sound as $\chi=\{0.72,0.725,0.75,0.775,0.78\}$ and a fuzzy set on this universe for the speed "near mach $0 \cdot 75 "=M$ where

$$
\underset{\sim}{M}=\{0 / 0 \cdot 72+0 \cdot 8 / 0 \cdot 725+1 / 0 \cdot 75+0 \cdot 8 / 0 \cdot 775+0 / 0 \cdot 78\}
$$

Define a universe of altitudes as $Y=\{21,22,23,24,25$, $26,27\}$ in k-feet and a fuzzy set on this universe for the altitude fuzzy set "approximately 24000 feet" $=N$, where

$$
\underset{\sim}{N}=\{0 / 21 k+0 \cdot 2 / 22 k+0 \cdot 7 / 23 k+1 / 24 k
$$

$$
+0 \cdot 7 / 25 k+0 \cdot 2 / 26 k+0 / 27 k\}
$$

i) Construct a relation $\underset{\sim}{R}=\underset{\sim}{M} \times \underset{\sim}{N}$
ii) For another aircraft speed, say ${\underset{\sim}{1}}_{1}$, in the region of mach $0 \cdot 75$, where

$$
\underset{\sim}{M_{1}}=\{0 / 0 \cdot 72+0 \cdot 8 / 0 \cdot 725+1 / 0 \cdot 75+0 \cdot 6 / 0 \cdot 775+
$$

$$
0 / 0 \cdot 78\}
$$

Find the relation $\underset{\sim}{S}={\underset{\sim}{M}}_{1} \circ \underset{\sim}{R}$ using max-min composition.

CS/M.Tech (CSE)/SEM-3/CST-631/2009-10

b) Train a hetero-associative network to store the input vectors $s=\left(s_{1} s_{2} s_{3} s_{4}\right)$ to the output vector $t=\left(t_{1} t_{2}\right)$. The vector pairs are given in the following table :

	s_{1}	s_{2}	s_{3}	s_{4}	t_{1}	t_{2}
1st	1	0	0	0	0	0
2nd	1	1	0	0	0	0
3rd	0	0	0	1	1	0
4th	0	0	1	1	1	0

2. a) State Perceptron training algorithm for single output classes.
b) Find the weights required to perform the following classification using Perceptron network. The vectors $(1,1,1,1)$ and ($-1,1,-1,-1)$ are belonging to the class (so have target value 1). Vectors ($1,1,1,-1$) and ($1,-1,-1,1$) not belonging to the class (so have the target value - 1). Assume learning rate as 1 and initial weights are zero (Perform only lst epoch). 10
3. a) Consider two fuzzy sets :
$\underset{\sim}{A}=\{0 \cdot 2 / 1+0 \cdot 3 / 2+0 \cdot 4 / 3+0 \cdot 5 / 4\}$ and
$\underset{\sim}{B}=\{0 \cdot 1 / 1+0 \cdot 2 / 2+0 \cdot 2 / 3+1 / 4\}$

Find the algebraic sum, algebraic product and bounded sum of the given fuzzy sets.
b) Describe the importance of fuzzy sets.
c) Using Madaline network, implement XOR function with bipolar inputs and targets. Assume the requined parameters for training of the network. Take bipolar data [Calculate only 1st epoch].
4. a) Two fuzzy relations are given by

$\underset{\sim}{R}=\underset{x_{1}}{x_{1}}$	x_{1}
x_{2}	\(\left[\begin{array}{cc}y_{2}

0 \cdot 6 \& 0 \cdot 3

0 \cdot 2 \& 0 \cdot 9\end{array}\right]\) and $\underset{\sim}{S}=\underset{y_{1}}{y_{1}} \underset{y_{2}}{ }\left[\begin{array}{ccc}z_{2} & z_{3} \\
0 \cdot 8 & 0 \cdot 5 & 0 \cdot 3 \\
0 \cdot 4 & 0 \cdot 7\end{array}\right]$

Obtain fuzzy relation T as a composition between the fuzzy relations. 5
b) What are tolerance and equivalence relations ? 5
c) Compare between supervised learning and unsupervised learning with proper diagrams. 5
5. a) Describe the training algorithm for 'Back-Propagation' network.

CS/M.Tech (CSE)/SEM-3/CST-631/2009-10

b) Construct and test a 'BAM' network to associate letters ' E ' and ' F ' with simple bipolar input-output vectors. The target output for ' E ' is $(-1,1)$ and for ' F ' is (1,1). The display matrix size is 5×3. The input patterns are :

$[$ 米 = + $1 \&$ ■ = - 1].
6. a) What do you mean by 'Topological preserving' maps ? 1
b) Define 'Euclidean distance'.
c) For a given Kohonen self-organizing feature map with weights shown in figure.

Use the square of the Euclidean distance to find the cluster unit Y_{J} closest to the input vector ($0 \cdot 2,0 \cdot 4$). Using a learning rate of $0 \cdot 2$, find the new weights for unit Y_{J}.
d) Briefly discuss about Hamming net. Also describe the algorithm.

