
Name : ……………………………………………………………

Roll No. : ………………………………………………………...

Invigilator's Signature : ……………………………………….

CS/M.Tech(CSE)/SEM-2/CSEM-204/2012

2012
SOFTWARE ENGINEERING

Time Allotted : 3 Hours Full Marks : 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words
as far as practicable.

Answer all questions from Section-A and
any two from Section-B.

SECTION - A
1. a) With respect to the software design principles

suggested by Davis, explain what do you understand by
the following :
i) The design process should not suffer from “tunnel

vision”.
ii) The design should be traceable to the analysis

model.
iii) The design should not reinvent the wheel.
iv) Design is not coding, coding is not design.

b) According to Robert Martin what are the important
characteristics of a bad design ? 8 + 2

2. a) What are coupling and cohesion ? What is functional
independence ? Why is it considered as a key to good
design ? What do you understand by clean
decomposition of a design problem into modules ?
What is meant by the visibility of a module ? 5

b) Explain what you understand by the following :
Procedural cohesion
Sequential cohesion
Temporal cohesion
Content coupling
Stamp coupling. 5

30218 (M.Tech) [Turn over

http://www.makaut.com

http://www.makaut.com

CS/M.Tech(CSE)/SEM-2/CSEM-204/2012

3. With suitable examples explain the following : 4 5

Interface segregation principle

Liskov's substitution principle

Open-Close principle

Dependency inversion principle.

SECTION - B
Answer any two questions.

4. Take into consideration a framework for desktop

applications. Such applications are meant to work with

documents. A framework for desktop applications contains

definitions for operations such as opening. Creating and

saving a document. The basic classes are abstract ones,

named Application and Document, their clients having to

create subclasses from them in order to define their own

applications. For generating a drawing application, for

example, they need to define the DrawingApplication and

DrawingDocument classes. The Application class has the

task of managing the documents, taking action at the

request of the client (for example, when the user selects the

open or save command form the menu). Because the

Document class that needs to be instantiated is specific to

the application, the Application class does not know it in

advance, so it doesn't know what to instantiate, but it does

know when to instantiate it. The framework needs to

instantiate a certain class, but it only knows abstract classes

that can't be instantiated.

Use Factory Method design pattern to solve the problem by

putting all the information related to the class that needs to

be instantiated into an object and using them outside the

framework. 15

30218 (M.Tech) 2

CS/M.Tech(CSE)/SEM-2/CSEM-204/2012

5. Use abstract factory for a GUI framework which should

support several look and feel themes, such as Motif and

Windows look. Each style defines different looks and

behaviours for each type of control : Buttons and Edit

Boxes. In order to avoid the hard coding it for each type of

control, define an abstract class LookAndFeel which will

instantiate, depending on a configuration parameter in the

application, one of the concrete factories :

WindowsLookAndFeel or MotifLookAndFeel. Each request for

a new object will be delegated to the instantiated concrete

factory which will return the controls with the specific

flavour. 15

6. Let's assume that we design an application with a factory to

generate new objects (Account, Customer, Site, Address

objects) with their ids, in a multithreading environment. If

the factory is instantiated twice in 2 different threads then it

is possible to have 2 overlapping ids for 2 different objects.

Implement the Factory as a singleton, in correspondence

with the open close principle. 15

30218 (M.Tech) 3 [Turn over

CS/M.Tech(CSE)/SEM-2/CSEM-204/2012

7. Consider a restaurant where a waiter has to provide a meal

menu as follows :

Base items Price Additives Price

Bread Rs. 5 Milk Rs. 10

Plain rice Rs. 10 Egg curry Rs. 20

Biryani rice Rs. 20 Chicken curry Rs. 50

Plain roti Rs. 2 Matar paneer Rs. 35

Tandoori roti Rs. 3 Chana masala Rs. 30

Chapatti Rs. 5 Fish fry Rs. 50

The Base items are implemented using array whereas

Additives are implemented using arraylist.

Use a suitable design pattern, enabling the waiter to display

the menu along with their price without knowing the

implementation details of Base items and Additives. The

waiter is also able to display the vegetarian menu if required.

The customer may place an order by selecting at least one

base item along with the desired number of additives. Create

a billing system using suitable design patterns to provide the

customer with a bill containing the description of the items

consumed along with the payable amount.

The design need to be extensively enough to support new

types of menu items. 15

30218 (M.Tech) 4

