

30064(M.Tech) [Turn over

Name : ……………………………………………………………

Roll No. : ……………………………………………..…………..

Invigilator’s Signature : ………………………………………..

 CS/M.Tech(CSE)/SEM-2/MCSE-204/2013

2013

PRINCIPLES OF LANGUAGE TRANSLATION
Time Allotted : 3 Hours Full Marks : 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words

as far as practicable.

GROUP – A

(Objective Type Questions)

Answer any five of the following :

1. a) Draw finite automata for

!

(a + b) " abb

 b) Draw NDFA for (ab* + ba*) using Thompson's

Construction Rule. 2 + 5

2. What will be the type checking rules for the following ?

 (i)

!

E " E1+ E2

 (ii)

!

E " E1 mod E2

 (iii)

!

S "if C then S1 2 + 2 + 3

3. a) Define Lexemes and Tokens.

 b) What are the different kinds of tokens ? Give examples.

 c) What kind of expression or grammar is used in

specifying tokens ? 2 + 3 + 2

http://www.makaut.com

http://www.makaut.com

CS/M.Tech(CSE)/SEM-2/MCSE-204/2013

30064(M.Tech) 2

4. What is the input an output of a compiler ? Which phases of

the compiler

 a) Process linear input and produces linear output ?

 b) Process linear input and produces hierarchical

output ?

 c) Process hierarchical and produces linear output ?

 d) Mention the inputs and outputs of these phases

individually. 1 + 2 + 2 + 2

5. a) When does intermediate code generation take place ?

 b) Translate the expression x = m/n + p * q

 into

 (i) Quadruples

 (ii) Triples

 (iii) Indirect Triples.

 (Given : " / " and " * " have higher precedence than "+")

 1 + 2 + 2 + 2

6. a) What is Lex tool ?

 b) Specify the input format.

 c) If identifiers and keywords follow the same structure

then how does the Lex differentiae them ?

 d) If you use Lex tool to write Lexical Analyser, do you still

need to design any automata ? 3 + 2 + 1 + 1

 CS/M.Tech(CSE)/SEM-2/MCSE-204/2013

30064(M.Tech) 3 [Turn over

7. a) Draw a DFA State Transition Diagram for identification
of unsigned positive numbers with optional fraction

part. (Examples : 1, 12, 123·45)

 b) Identify the lexemes with tokens from the following lines
of C code.

 void stat();

 main() {

 int counter;

 for (counter = 0; counter < 5; counter++) {

 stat ();

 }

 } 3 + 4

8. a) Type checking in compiler : is tit static or dynamic ?

 b) It is done in which phase of the compiler ? What is the

input to it ?

 c) What kind of grammar is required to implement type

checking ?

 d) What kind of grammar is required to implement

intermediate code generation ?

 e) What is the use of back patching ? 2 + 2 + 1 + 1 + 1

GROUP – B

(Long Answer Type Questions)

 Attempt any five 5 × 7 = 35

9. Discuss on the role of parsing in compilation of a program.
Discuss on Chomsky hierarchy of grammars with suitable
examples.

CS/M.Tech(CSE)/SEM-2/MCSE-204/2013

30064(M.Tech) 4

10. What is ambiguous grammar ? Check whether the

CFG S

!

" aSb| SS | ambiguous. Design a non-ambiguous

grammar for arithmetic expression involving symbols : +, *, –,

!

÷ , (,), and numerical digits.

11. What is left-recursion issue in parsing ? Write an algorithm

for removal of indirect left-recursion. Remove left-recursion

issue from the grammar :

!

S " Aa|b;

!

A " Ac|Sd| f .

12. How does left-factoring make sense for predictive parsing ?

Write left-factoring algorithm. Apply left-factoring for the

grammar : S

!

" iEiS |i Et Se S |a; E

!

" b.

13. Design a top-down recursive descent parser for the following

grammar with necessary transformation.

 E

!

" E + E | E * E | (E) | id

14. Construct predictive parsing table for the following

grammar :

 E

!

" TE

!

I ; E

!

I

!

" + TE

!

I | ; T

!

" FT

!

I ; T

!

I

!

" * FT

!

I |; F

!

" (E) | id.

15. Construct SLR parsing table for the following grammar :

 S

!

" E; E

!

" E + T | T; T

!

" T * F | F; F

!

" id.

