

CS/ M.TECH (CSE)/ SEM-2/ CSTE-42/ 2013 2013
 INFORMATION SECURITY - II

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any five of the following : $\quad 5 \times 14=70$

1. a) Describe one-time padding technique for encryption. Prove that the system is perfectly secure.
b) What is MAC ? What is the most important attacks on MACs ? Give an example of a message authentication using symmetric-key and asymmetric key cryptography. $\quad(2+4)+(2+2+4)$
2. a) Define addition of two points on Elliptic Curve. What is ECDSA ? Describe it.
b) Consider the following mode of operation as an alternative to double encryption :
Encryption : $C_{i}=E_{K_{1}}\left(P_{i} \oplus E_{K_{2}}\left(C_{i-1}\right)\right)$
Decryption : $P_{i}=D_{K_{1}}\left(C_{i}\right) \oplus E_{K_{2}}\left(C_{i-1}\right)$
Analyze the security of this mode of operation assuming that the block cipher is DES. $(5+5)+4$
3. a) Describe Chen's authenticated encryption scheme.
b) Describe briefly the Alert protocol and Record Protocol in SSL.
4. a) It is tempting to try to develop a variation on DiffieHellman that could be used as a digital signature. Here is one that is simpler than DSA and that does not require a secret random number in addition to the private key.

Public elements : p (prime number),
$g\left(\right.$ generator of $\left.Z_{p}\right)$
Private key : $x, 1<x<p-1$.
Public key : $y=g^{x} \bmod p$.
To sign a message M, compute $h=H(M)$, where $H()$ is a cryptographically strong hash function. Assume that $\operatorname{gcd}(h, p-1)=1$. (If not, append the hash to the message and recalculate the hash. Continue this process until a hash is generated that is relatively prime to $p-1$). Then calculate Z to satisfy $Z \times h=x \bmod p-1$. The signature of the message is $s=g^{z}$. To verify a signature a user verifies that $s^{h}=y$. (Should hold for good signatures because $\left.s^{h}=\left(g^{Z}\right)^{h}=g^{x}=h\right)$. Show that the verification process produces an equality if the signature is valid.
b) Describe a smart-card authentication protocol based on hash function.
$7+7$
5. a) Describe a Needham and Schroeder's 'challenge response' protocol.
b) Describe Zero-knowledge authentication protocol based on DLP.

6. a) Let s be the size of a natural language's alphabet. For English $s=26$. Let $k=k_{1}, k_{2}, \ldots, k_{n}$ be a sequence of characters in the alphabet called the keyword. Let $e()$ be an arbitrary permutation of the alphabet's characters (not necessarily a shift). The single mixedalphabet Vigenere cipher with secret key (k, $e()$) is defined as follows : $c_{i}=e\left(m_{i}\right)+k_{i} \bmod s$, where $c i$ is the i th character of the ciphertext, encrypting the i th character $m i$ of the plaintext. As in the regular Vigenere cipher, $k_{i+n}=k_{i}$ if $i>n$: The characters of the key-word are reused cyclically. The corresponding decryption algorithm is $m_{i}=e^{-1}\left(c_{i}-k_{i} \bmod s\right)$. Analize the security of the above system.
b) Describe Kerberos V5 authentication protocol. $7+7$
7. a) Define Bilinear pairings. Design a multi-signature scheme based on bi-linear pairings.
b) Describe PGP file format and Radix-64 conversion technique.

$$
7+7
$$

8. Write short notes on the following :
a) SET
b) SMIME
c) IP security.
