	Utech
Name:	()
Roll No.:	A Great (y Complete 2nd College)
Invigilator's Signature :	

CS/M.TECH (CSE)/SEM-2/CSTE-42/2013 2013

INFORMATION SECURITY - II

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any five of the following: $5 \times 14 = 70$

- 1. a) Describe one-time padding technique for encryption. Prove that the system is perfectly secure.
 - b) What is MAC? What is the most important attacks on MACs? Give an example of a message authentication using symmetric-key and asymmetric key cryptography. (2+4)+(2+2+4)
- 2. a) Define addition of two points on Elliptic Curve. What is ECDSA? Describe it.
 - b) Consider the following mode of operation as an alternative to double encryption :

Encryption:
$$C_i = E_{K_1} \left(P_i \oplus E_{K_2} \left(C_{i-1} \right) \right)$$

Decryption:
$$P_i = D_{K_1} (C_i) \oplus E_{K_2} (C_{i-1})$$

Analyze the security of this mode of operation assuming that the block cipher is DES. (5+5)+4

30040 (M.Tech)

[Turn over

- 3. a) Describe Chen's authenticated encryption scheme.
 - b) Describe briefly the Alert protocol and Record Protocol in SSL. 7 + 7
- 4. a) It is tempting to try to develop a variation on Diffie-Hellman that could be used as a digital signature. Here is one that is simpler than DSA and that does not require a secret random number in addition to the private key.

Public elements : p (prime number), g (generator of Z_p)

Private key : x, 1 < x < p - 1.

Public key : $y = g^x \mod p$.

To sign a message M, compute h=H (M), where H() is a cryptographically strong hash function. Assume that gcd (h, p-1) = 1. (If not, append the hash to the message and recalculate the hash. Continue this process until a hash is generated that is relatively prime to p-1). Then calculate Z to satisfy $Z \times h = x \mod p - 1$. The signature of the message is $s = g^Z$. To verify a signature a user verifies that $s^h = y$. (Should hold for good signatures because

 $s^h = (g^Z)^h = g^x = h$). Show that the verification process produces an equality if the signature is valid.

- b) Describe a smart-card authentication protocol based on hash function. 7 + 7
- 5. a) Describe a Needham and Schroeder's 'challenge response' protocol.
 - b) Describe Zero-knowledge authentication protocol based on DLP. 7 + 7

- 6. a) Let s be the size of a natural language's alphabet. For English s=26. Let $k=k_1,\ k_2,\ \dots,\ k_n$ be a sequence of characters in the alphabet called the keyword. Let e() be an arbitrary permutation of the alphabet's characters (not necessarily a shift). The single mixed-alphabet Vigenere cipher with secret key (k, e()) is defined as follows: $c_i=e(m_i)+k_i \mod s$, where ci is the i th character of the ciphertext, encrypting the i th character mi of the plaintext. As in the regular Vigenere cipher, $k_{i+n}=k_i$ if i>n: The characters of the key-word are reused cyclically. The corresponding decryption algorithm is $m_i=e^{-1}$ ($c_i-k_i \mod s$). Analize the security of the above system.
 - b) Describe Kerberos V5 authentication protocol. 7 + 7
- 7. a) Define Bilinear pairings. Design a multi-signature scheme based on bi-linear pairings.
 - b) Describe PGP file format and Radix-64 conversion technique. 7 + 7
- 8. Write short notes on the following:
 - a) SET
 - b) SMIME
 - c) IP security.

5 + 5 + 4

30040 (M.Tech)

3

[Turn over