

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any seven questions. $7 \times 10=70$

1. Two zero memory sources S_{1} and S_{2} have q_{1} and q_{2} symbols, respectively. The symbols of S_{1} occur with probabilities $P_{i}, i=1,2, \ldots . q_{1}$; the symbols of S_{2} occur with probabilities $Q_{i}, i=1,2, \ldots . q_{2}$ and the entropies of S_{1} and S_{2} are H_{1} and H_{2} respectively. A new zero-memory source $S(y)$, called a mixture of S_{1} and S_{2}, is formed with $q_{1}+q_{2}$ symbols. The first q_{1} symbols of $S(y)$ have probabilities $y P_{i}, i=1,2, \ldots . q_{1}$, and the last q_{2} symbols of $S(y)$ have probabilities $y^{\prime} Q_{i}, i=1,2, \ldots . q_{2}\left(y^{\prime}=y-1\right)$.
a) Show that $H[S(y)]=y H_{1}+y^{\prime} H_{2}+H(y)$.
b) Express y_{0}, the value of y which maximizes $H[S(y)]$, in terms of H_{1} and H_{2}. Find $H\left[S\left(y_{0}\right)\right]$. $6+4$

CS / M.Tech. (CSE)/SEM-2 / CSEM-216/2011
2. A source has six possible outputs with probabilities as shown in the table below. Codes $1,2,3,4,5$ and 6 , as given in the table are considered.

Output	$\boldsymbol{P}\left(\boldsymbol{s}_{\boldsymbol{i}}\right)$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
S_{1}	$\frac{1}{2}$	000	0	0	0	0	0
S_{2}	$\frac{1}{4}$	001	01	10	10	10	100
S_{3}	$\frac{1}{16}$	010	011	110	110	1100	101
S_{4}	$\frac{1}{16}$	011	0111	1110	1110	1101	110
S_{5}	$\frac{1}{16}$	100	01111	11110	1011	1110	111
S_{6}	$\frac{1}{16}$	101	011111	111110	1101	1111	001

a) Which of these codes are uniquely decodable?
b) Which are instantaneous?
c) Find the average length L for all uniquely decodable codes.

$$
3+3+4
$$

3. According to the table given below :
a) Find $H(S)$ and $H_{3}(S)$.
b) Find a compact code $H(S)$ when $X=\{0,1\}$ and $X=\{0,1,2\}$.
c) Compute L for both the above codes: $3+4+3$

S	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}	S_{7}
$P\left(s_{i}\right)$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{27}$	$\frac{1}{27}$	$\frac{1}{27}$

4.

Each time an input symbol is transmitted over channel 1. It is repeated over channel 2 (see figure), so that may be considered to be a pair of symbols $\left(b_{j}, c_{k}\right)$. Furthermore we assume that the repetition is performed independently of the results of the original transmission, so that $P\left(c_{k} / a_{i}, b_{j}\right)=P\left(c_{k}, a_{i}\right)$. Note that this does not mean c_{k} and b_{j} are statistically independent, $P\left(c_{k} / b_{j}\right)$ not equal to $P\left(c_{k}\right)$.
a) Show that $I(A ; B ; C)=I(A ; B)+I(A ; C)-I(B ; C)$.
b) Generalize part a to n channels. $6+4$
5. A binary multiplicative channel has 2 binary inputs and one binary output, $b=a c$. This channel may be described as an ordinary zero-memory channel by considering four possible output combinations to compromise a new input alphabet A^{\prime} :
$A^{\prime}=\{00,01,10,11\}$
a) Write the channel matrix for the channel with input A^{\prime} and output B.
b) The input symbols a and c are selected independently.

$$
\begin{array}{lr}
P_{r}\{a=0\}=w_{1}, \quad P_{r}\{c=0\}=w_{2} . & \text { Define } \\
1-w_{1}=w_{1}^{\prime} & \text { and } \\
1-w_{2} \text {. Find } I\left(A^{\prime}: B\right) . & 6+4
\end{array}
$$

6. A uniform channel has r inputs. These inputs are chosen with equal probabilities, and it is found that the maximum likelihood decision procedure produces a probability of error p. Find a lower bound to the equivocation $H(A / B)$ in terms r or p, or both. The lower bound of 0 is not acceptable.
7. The source S has 9 symbols each occurs with probability $1 / 9$.
a) Find a compact code using the code alphabet $X=\left\{\begin{array}{ll}0 & 1\end{array}\right\}$
b) Find a compact code using the code alphabet $X=\{0,1,2\}$
c) Find a compact code using the code alphabet $X=\{0,1,2,3\} . \quad 3+3+4$
8. A zero memory binary source has $P(0)=0 \cdot 1$ and $P(1)=0 \cdot 9$.
a) Find $H(S)$.
b) Find L.
c) Find $\frac{L_{n}}{n}$ for $n=2,3,4$ and $n \rightarrow \infty$, when S^{n} is encoded into a compact code, still with $X=\{0,1\}$.
d) Find the efficiency of you four codes. $4 \times 2 \frac{1}{2}$
9. Answer the following :
a) Consider the third order Markov source where the probability of emitting a 0 or a 1 does not depend upon the previous two symbols but does depend on the third symbol back. The probability that the next symbol will be the same as the third symbol back is $0 \cdot 9$. Draw the state diagram for this source.
b) Find the entropy of this source.

$$
6+4
$$

