	Utech
Name:	
Roll No.:	A Spring Of Exercising and Explana
Invigilator's Signature :	

CS/M.Tech(CSE)/SEM-2/MCS-203/2011 2011

DISTRIBUTED COMPUTER SYSTEMS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following:

 $10 \times 1 = 10$

- i) In a distributed system Processors and Memory modules can be interconnected by
 - a) CPU Memory internal bus
 - b) Switches
 - c) LAN
 - d) all of these.
- ii) In a Multiporcessor environment & bus based architectures, the speed of communication among CPUs is maximum for
 - a) NUMA

- b) NORMA
- c) UMAd)

same for all.

30068 (M.Tech)

[Turn over

CS/M.Tech(CSE)/SEM-2/MCS-203/2011

- iii) A UMA architecture can be categorized asa) MIMDb) MISDc) SIMDd) SISD.
- iv) The No. of messages in the network is maximum for
 - a) lazy release consistency
 - b) sequential consistency
 - c) entry consistency
 - d) same for all.
- v) A high level synchronization mechanism is provided by
 - a) sitrict consistency
 - b) sequential consistency
 - c) barrier
 - d) all of these.
- vi) Chandy-Misra-Haas algorithm is used in a distributed environment for
 - a) ensuring critical section access
 - b) selecting distributed co-ordinator
 - c) detecting distributed deadlock
 - d) transaction processing.

- vii) Lamport's algorithm implements, 'happened before relationship' for message send and receive ordering according to
 - a) global clock (UTC)
 - b) real time clock
 - c) logical clock
 - d) none of these.
- viii) In a distributed environment, the most difficult consistency model to implement is
 - a) causal consistency
 - b) strict consistency
 - c) sequential consistency
 - d) release consistency.
- ix) A two-phase commit protocol refers to
 - a) detection of termination of a distributed algorithm
 - b) critical section access
 - c) clock synchronization
 - d) transaction processing.
- x) For running a parallel algorithm transparently on a NORMA system it is essential to have a
 - a) DSM
 - b) virtual memory system
 - c) paging system
 - d) all of these.

GROUP - B

Answer any five of the following.

- 2. a) Explain the concept of scalability in a distributed system. What are the basic principles to make a distributed system scalable?
 - b) How do you propose to implement location transparencyto a file in a distributed system?6
- 3. a) Explain how distributed shared memory using page as a basic unit can be implemented in a NORMA environment.
 - b) In a NUMA environment if a given read-only page is used frequently by two different processors, what decision the memory management will take regarding the placement of the page?
 - c) "An invalidation protocol in a paging system works more efficiently compared to an updation protocol". Justify.

2

CS/M.Tech(CSE)/SEM-2/	MCS-203/2011
• • • • • • • • • • • • • • • • • • • •	0.00

- 4. a) What is the utility of the Logical clock in a distributed system? What are the assumptions necessary for the synchronization of Logical clocks? 2+4
 - b) Explain how RPC uses the "Copy Restore" mechanism
 to Marshall parameters where the word size for the *rpc* server and *rpc* client are different.
 - c) Explain with example how a transaction processing is
 implemented efficiently using private workspace.
- a) Describe two methods by which load measurement of a
 CPU can be carried out. Describe advantages and
 disadvantages of each method.
 - b) Describe an efficient load balancing mechanism which utilizes process migration from one CPU to another.Why do you consider it efficient?
 - c) From what viewpoint do you think that a sub-optimal load balancing algorithm performs better than an optimum algorithm?

CS/M.Tech(CSE)/SEM-2/MCS-203/2011

- 6. a) What is the difference between true global state and meaningful global state?
 - b) In absence of global time how is meaningful global state obtained from a collection of local states recorded at different real times?

4

- c) State the principles involved.
- 7. a) Describe Ricart Agarwala's algorithm and its purpose.5
 - b) In case of failure of a node, in the above algorithm how can the system recover?
 - c) Describe an algorithm which is used to synchronize a local clock with UTC. Describe the limitations inherent in the algorithm.
- 8. a) Describe the architecture of Network File System.

 How can a user access a file which is located at a distant server?
 - b) Describe the centralized algorithm for detecting distributed deadlock, its drawbacks and remedies.

- 9. a) Describe the principles behind the design of fault tolerant systems.
 - b) Describe a fault tolerant paradigm where a faulty system generates wrong information but still continues to function.