Name :	
Roll No. :	An Annual (V Reweider Ind Declared

Invigilator's Signature :

CS/M.TECH (CSE)/SEM-2/MCS-202/2012 2012

ADVANCED DATABASE MANAGEMENT SYSTEM

Time Allotted : 3 Hours

Full Marks: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Answer any five questions. $5 \times 14 = 70$

- 1. a) State the correctness rule of fragmentation.
 - b) Consider the following global, fragmentation and allocation schema :

Global Schema : STUDENT (NUMBER, NAME, DEPT) Fragmentation Schema : STUDENT $_1 = \sigma_{DEPT = 'EE' (Student)}$ STUDENT $_2 = \sigma_{DEPT = 'CS' (Student)}$

Allocation Schema : STUDENT 1 at sites 1, 2

STUDENT 2 at sites 3, 4

(Assme that 'EE' and 'CS' are the only possible values for $\ensuremath{\mathsf{DEPT}}$)

i) Write an application that requires the student number from the terminal and outputs the name and department at levels 1, 2, 3 of transparency.

3

2

30339 (M.TECH)

[Turn over

- Write an application that moves the student having number 232 from dept 'EE' to Dept. 'CS' at levels 1, 2 and 3 of transparency.
- iii) Write 2-phase commit protocol, when blocking problem will take place. 4+2
- 2. a) Describe the objectives of data distribution.
 - b) Describe distributed serializability. Describe distributed 2PL.
 2 + 2
 - c) A country-wide drug-supplier chain operates from five different cities in the country has the following tables in the database :

Drug Shop Mstr (DS-ds, DS-city, DS-contact no.)

Medicine Mstr (med-id, med-name, manu-id)

Manufacturer Mstr (manu-id, manu-name, manu-city)

Other (med-id, DS-id, Qty)

Suggest a fragmentation and allocation schema keep in mind following queries :

- i) List the manufacturer's names who belong to the same city in which the drug shop that has placed on order resides.
- ii) How many orders are generated from a city, say 'X'?

Justify your design and state your assumption clearly.

7

3

3. a) Consider the following schema :

EMP (ENO, ENAME, TITLE)

PROJ (PNO, PNAME, BUDGET)

ASG (ENO, PNO, RESP, DUR)

The relation PROJ is horizontally fragmented as

PROJ 1 = $\sigma_{PNO \leq P3'}$ (PROJ)

PROJ 2 = $\sigma_{PNO > P3'}$ (PROJ)

30339 (M.TECH)

		CS/M.TECH (CSE)/SEM-2/MCS-202/2012
		Transform the following query into a reduced query on fragments :
		Select budget from PROJ, ASG
		where PROJ . PNO = ASG . PNO
		AND ASG . PNO = 'P4' 8
	b)	Simplify the following query using the idempotency rules :
		select ENO from ASG where
		(NOT (TITLE = "PROGRAMMER")
	and	(TITLE = "PROGRAMMER' OR TITLE = "ELECT.ENG")
		and not (TITLE = "Elect. ENG"))
		OR ENAME = "J. DAS" 4
	c)	How is the parametric query processed ? 2
4.	a)	Write 3-phase commit. How blocking problem is handled in 3-phase commit ? $4 + 2$
	b)	Writethedifferent2-phaselockingstrategyindistributeddatabase in case of redundant copies.3
	c)	How deadlock is detected in distributed database? 5
5.	a)	When is semijoin preferred in join queries ? 3
	b)	Why query optimization is important in distributeddatabases ? Explain with example.4
	c)	Define Data Warehouse. Explain each term. 3
	d)	Differentiate between OLTP and OLAP. 3 + 1
6.	a)	Why data warehouse is kept separate from OLTP database system ?2
	b)	Suppose that the data warehouse consists of the three dimensions time, item and location and two measures amount-sales and quantity-sales. Draw a star-schema for the above data warehouse. 4
	c)	Define ROLAP, MOLAP, HOLAP. 3
	d)	Discuss different OLAP operations. 5
303	339 (M	I.TECH) 3 [Turn over

CS/M.TECH (CSE)/SEM-2/MCS-202/2012

2

- 7. Explain support and confidence. a)
 - Find out strong association rule with support 20% and b) confidence 50% from the following transactions : 7

	TID	List of items	
_	T100	I ₁ , I ₂ , I ₅	
	T200	I $_2$, I $_4$	
	T300	I ₂ , I ₃	
	T400	I $_1$, I $_2$, I $_4$	
	T500	I ₁ , I ₃	
	T600	I ₂ , I ₃	
	T700	I ₁ , I ₃	
	T800	I $_1,$ I $_2$, I $_3$, I $_5$	
	T900	I $_1$, I $_2$, I $_3$	
	T1000	I ₂ , I ₃	
Explain the architecture of data mining. 3			
Differentiate between classification and clustering. 2			
What are the different methods of computing best split? What is gini index? What are entropy gain and gain ratio? $3 + 2 + 2$			

- Describe K-means Algorithm. b) 4
- 3 How noisy data is smoothed using binning method? c)

9. Write notes on any *two* of the following : 2×7

- a) Snow flake schema
- b) Data mart
- Hierarchical method of clustering. c)

c)

d)

a)

8.