

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 of Section - A and any five Questions from Section - B \& Section - C, taking at least two from each group.

SECTION - A

(Compulsory)

1. a) What do you mean by a scalable algorithm ?
b) State Amdahl's Law.
c) What are the advantages of the Harvard Architecture over the Von-Neumann architecture?
d) What is the advantage of configurable computing?
e) Why is pipelining called temporal parallelism ? What do you mean by spatial parallelism ? $1+1$
2. a) Compare the advantages and drawbacks between ASICs and FPGAs.
b) With a block diagram explain the architecture of FPGA.
c) With a diagram explain clearly how FPGA can be configured, Why FPGA can be used as a basic building block of "Re-Configurable Computing" ? $4+1$
3. a) What do you mean by "Reconfigurable" Computing ? Give the block diagram of a "Re-Configurable Architecture" and explain the principle of operation. $2+5$
b) Give the block diagram of a 'Reconfigurable SIMD Architecture" and clearly explain the principle of operation.
4. a) What are the characteristics of a "Systolic Architecture"? 2
b) Give the block diagram of a Systolic Architecture to compute $y(n)=\sum x(n-k) \cdot h(k)$ for $k=0$. Indicate the structure of the basic cell. Calculate the number of clocks required to deliver N number of outputs for such an Architecture.
c) Give the block diagram of the Systolic architecture for matrix multiplications of two matrices of size (2×2). 4
5. a) What do you mean by overhead in "loop iteration"? How can this be reduced to zero ?
b) What is "circular addressing scheme" ? With an example clearly explain the need of such a scheme.
c) Discuss a technique to design a barrel shifter for shifting an eight bit number to both directions (left/right).
d) What do you mean by "Single Cycle Execution"?

SECTION - C

6. a) Prove that the total number of mesh points k or fewer jumps away from an arbitrary point in a $2 D$ mesh is $(2 k 2+2 k+1)$. (Ignore the case where the point is less than k jumps from the edge of the mesh.)

4
b) Hence prove that a complete binary tree of height greater than 4 cannot be embedded in a $2 D$ mesh without increasing the dilation beyond 1 . 4
c) State and prove Brent's theorem.
7. a) Prove that:

A p-processor PRIORITY PRAM can be simulated by a p-processor EREW PRAM with the time complexity increase by a factor of $\Theta(\log (p))(p$ is an integer $) .4$
b) Show a dilation-1 embedding of an 8×2 mesh into a hypercube. Your diagram should clearly indicate which mesh position number gets mapped to which processor number on the hypercube.
c) Write a CREW PRAM algorithm of your design that will automate the mapping in part (a).
8. a) What are the necessary and sufficient conditions for the existence of a dilation-1 embedding of a connected graph G to a hypercube with n nodes.
b) Given a node $\left(a_{k-1}, a_{k-2} \ldots . a_{1}, a_{0}\right)_{2}$ in a shuffleexchange network with 2^{k} nodes, which node will be exactly $(2 k-1)$ traversals apart?
c) Explain the importance of the following metrics for a network of processor nodes in parallel computer : 4
i) Diameter
ii) Bisection width
iii) Number of edges per node
iv) Maximum edge length.
9. a) Devise a CREW PRAM algorithm to multiply two $2^{k} \times 2^{k}$ matrices (k is an integer).
b) Find the time complexity of your algorithm. What will be the time complexity of the algorithm if the number of processors is p ?

