
Abstract

Name : Roll No. \qquad Invigilator's Signature :

CS/M.Tech (CSE)/SEM-1/MTCSE-11/2012-13
2012
THEORY OF COMPUTING
Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

Answer any five of the following.

$$
5 \times 5=25
$$

1. State the pumping lemma for regular language. Prove the following language is not regular.
$L=\left\{a^{n} b^{n+1} \mid n \geq 1\right\}$.
2. Minimize the following machine by partition the distinguishable states whose final states is G.

Present State	Next State	
	b	
B	A	D
C	C	F
D	A	E
E	A	F
F	B	E
G	B	D

3. Design a CFG Language $L=\left\{(a b)^{n} \mid n \geq 1\right\}$ and convert that CFG into CNF form.
4. Find regular expression for the given diagram

5. Construct the grammar for the language $L=\left\{a^{m} b^{n}\right.$ |where $\left.m \neq n\right\}$
6. Show that the function $\mathrm{f}(\mathrm{n})=\mathrm{n}$! is a primitive recursive.
7. Construct a Moore machine equivalent to the Mealy machine M given in table.

Present	Next State			
	input $=0$		input = 1	
	state	output	state	output
\rightarrow A	A	1	B	0
B	D	1	D	1
C	B	1	C	1
D	C	0	A	1

GROUP - B
Answer any three of the following.

$$
3 \times 15=45
$$

8. a) Prove the following identity :

$$
(0 * 01+10)^{*} 0^{*}=(0+01+10)^{*}
$$

b) Construct a DFA with reduced state equivalent to the regular expression :
$10+(00+1) 0 * 10$
c) Construct a regular grammar G generating the regular set represented by
$R=01(0+1)$ *
$4+6+5$
9. a) Convert the following grammar into GNF
$S \rightarrow a A S \mid a$
$A \rightarrow S b A|S S| b a$
b) What are the Decidable properties of CFL's ?
c) State the Pumping Lemma for Context-Free Language.

By using pumping lemma, show that the language $L=\left\{a^{n} b^{m} \mid m=n^{2}\right\}$ is not a context-free language.
d) Show that the following grammar is ambiguous.
$S \rightarrow a b S b|a| a A b$
$S \rightarrow b S|a A A b| b a$

$$
5+2+5+3
$$

10. a) Define Pushdown Automata. Discuss with an example.
b) Define acceptance of input strings by PDA.
c) Design a PDA which accepts the language,
$L=\left\{a^{n} b^{n} / n \geq 1\right\}$
d) Construct a pda equivalent to the CFG
$S \rightarrow 0 B B$,
$B \rightarrow 0 S|I S| 0$
Test whether 010^{4} accepted by Null Store. $2+2+5+6$
11. a) Give formal definitions of a k-tape Turing Machine.
b) Construct a Turing Machine that will accept all string over $L_{G}=\left\{a^{n} b^{n} c^{n}\right\} \mid$ where $\left.\mathrm{n} \geq 1\right\}$
c) Describe the halting problem of Turing Machine.

$$
3+9+3
$$

12. a) Prove that L is a recursive language, then its complement L^{-1} is also recursive.
b) State the properties of Recursive Language.
c) Find the language generated by the grammar.

$$
\begin{aligned}
& S \rightarrow a b S b|a| a A b \\
& A \rightarrow b S|a A A b| b a
\end{aligned}
$$

