
 Name :
 Roll No. :
 \qquad roman Invigilator's Signature :
 \qquad
 CS/M.Tech (CSE)/SEM-1/PGCS-105B/2011-12 2011 THEORY OF COMPUTATION

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any five questions. $5 \times 14=70$

1. a) Construct a DFA accepting all strings w over $\{0,1\}$ such that the number of 1 's in w is $3 \bmod 4$.
b) Construct a transition system which can accept strings over the alphabet a, b containing either cat or rat.
c) Construct a minimum state automaton equivalent to the DFA described by Figure 1.

Figure 1

CS/M.Tech (CSE)/SEM-1/PGCS-105B/2011-12
2. a) Show that the set of all non-palindromes Qver \{a, b\} is a context-free language.
b) Construct a grammar to generate

$$
\left\{(a b)^{n} \mid n \geq 1\right\} \cup\left\{(b a)^{n} \mid n \geq 1\right\} .
$$

c) Find the regular expression corresponding to Figure 2. 6

Figure 2
3. a) Design an FA for the RE $10+(0+11) 0 * 1$.
b) Prove

$$
(1+00 * 1)+(1+00 * 1)(0+10 * 1) *(0+10 * 1)=0 * 1(0+10 * 1) * \text {. }
$$

c) Is $L=\left\{a^{2 n} \mid n \geq 1\right\}$ regular ?
4. a) Write the CFG for
b) Reduce the following grammar to GNF :

6

$$
S \rightarrow A B ; A \rightarrow B S|b, B \rightarrow S A| a .
$$

c) Prove that CFLs are not closed under intersection and complement operation.
5. a) Construct a PDA, A accepting the set of all strings over $\{\mathrm{a}, \mathrm{b}\}$ with equal number of a 's and b 's.
b) Construct a PDA A equivalent to the following :
$C F G: S \rightarrow O B B, B \rightarrow O S|1 S| O$. Test whether $O 10^{4}$ is in $N(A)$. $3+3$
c) Using the Pumping Lemma prove that $L=\left\{a^{P} \mid P\right.$ is a prime $\}$ is not regular.
6. a) Construct a Turing machine that enumerates $\left\{O^{n} 1^{n} \mid n \geq 1\right\}$.
b) Construct a Turing machine that can accept the strings over $\{0,1\}$ containing even number of 1 's.
c) Construct a TM that accepts the language 01 米 + 10 . 4

CS / M.Tech (CSE)/SEM-1/PGCS-105B/2011-12

7. a) State and prove Pumping Lemma for regular language. 6

b) Construct a TM that can accept the set of all even palindromes over $\{0,1\}$.
c) Design a TM that converts a binary string into its equivalent unary string.

