

CS/M.TECH(CSE)/SEM-1/MTCSE-11/2011-12
2011
THEORY OF COMPUTATION
Time Allotted: 3 Hours
Full Marks : 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
(Short Answer Type Questions)
Answer any five questions.
$5 \times 5=25$

1. State the pumping lemma for regular language. Prove that the following language is not regular :
$L=\left\{a^{p o w(i, 2)} \mid i\right.$ is positive integer number and $\operatorname{pow}(x, y)$ returns $\left.x^{y}\right\}$.
2. Minimize the following machine by partition of the distinguishable states. Final states are $\{E, F\}$:

Present State	Next State	
	0	1
A	E	D
B	F	D
C	E	B
D	F	B
E	C	F
F	B	C

3. Design a CFG for a language $L=\left\{a^{4 n} \mid n \geq 1\right.$,ana convert that CFG into CNF form.

4. Show that the following grammar is ambiguous :
$S \rightarrow a b S b|a| a A b$
$A \rightarrow b S|a A A b| b a$
5. State the Pumping Lemma for context-free language. By using pumping lemma, show that the language $L=\left\{a^{p} \mid p\right.$ is prime $\}$ is not a context-free language.
6. Write the context-free grammar for the language :

$$
L=\left\{0^{i} 1^{j} 2^{k} / i=j \text { or } j=k\right\}
$$

7. Show that the following function is primitive recursive :
factorial $(n)=n$!

GROUP - B

(Long Answer Type Questions)
Answer any three of the following. $3 \times 15=45$
8. a) Prove the following identity :

$$
P^{*}+(P+Q) * Q P^{*}=P *(Q P *) *
$$

b) Draw the transition diagram for the given regular expression :
$0(1+010)$ * (10 * 1) * 10 * 1
c) Find the regular expression for the machine given in the table below. In this case the starting state is A and final state is D.

Present state	Next State		
	$i p=0$	$i p=1$	$i p=2$
A	C	D	B
B	A	B	D
C	A	B	C
D	D	C	B

9. a) Define Pushdown Automata. Discuss with an example.
b) What is ID of PDA ?

c) Design a PDA which accepts the language, $L=\left\{w €\{a, b\}^{*} / w\right.$ has the equal numbers of a 's and b's \}
d) Let G be the grammar
$S \rightarrow a B / b a, A \rightarrow a / a S / b A A, B \rightarrow b / b S / a B B$
For the string aaabbabbba, find -
i) leftmost derivation
ii) rightmost derivation
iii) parse tree. $3+2+5+5$
10. a) Formally define
i) a k-head Turing machine (with a single one-way infinite tape)
ii) a configuration of such a machine
iii) the yields in one step relation between configuration of such a machine.
b) Design a Turing machine to recognize the language $\left\{a^{n} b^{n} c^{m} \mid n, m \geq 1\right\}$. $3+2+2+8$
11. a) Convert the following grammar into GNF :
$S \rightarrow a A S \mid a$
$A \rightarrow S b A|S S| b a$
b) What are the decidable properties of CFL's ?
c) Construct a ida equivalent to the CFG
$S \rightarrow 0 B B$
$B \rightarrow 0 S|1 S| 0$
Test whether 010^{4} accepted by Null Store. $5+3+7$
12. a) Formally define alphabet, grammar and language.
b) Prove the following :
 Regular set is closed under set intersection and complementation.
c) Remove ' ε ' transition from the following diagram and then design equivalent DFA.

