Name :
 Roll No. :
 \qquad 5R-m
 Invigilator's Signature :
 \qquad
 CS/M.Tech (CSE)/SEM-1/PGCS-105-B/2010-11 2010-11 THEORY OF COMPUTATION

Time Allotted : 3 Hours

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any five of the following. $5 \times 14=70$

1. a) Design an FA for the RE $a^{*}+(a b+a)^{*}$
b) Is $L=\left\{a^{2 n} \mid n \geq 1\right\}$ regular ?
c) Construct a grammar G generating $\left\{x x \mid x \in(a, b)^{*}\right\}$.
2. a) Using the pumping lemma prove that $L=\left\{a^{P} \mid P\right.$ is a prime $\}$ is not regular. 4
b) Prove

$$
\left(1+00^{*} 1\right)+\left(1+00^{*} 1\right)\left(0+10^{*} 1\right)^{*}\left(0+10^{*} 1\right)=0^{*} 1\left(0+10^{*} 1\right)^{*} . \quad 5
$$

c) Write the CFG for the language $L=\left\{0^{i} 1^{j} 2^{k} \mid i=j\right.$ or $\left.j=k\right\}$.
3. a) State and prove pumping lemma for regular language. 8 b) Show that $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$ is not context-free but context-sensitive.
4. a) Construct a PDA A equivalent to the following CFG :
$\mathrm{S} \rightarrow \mathrm{OBB}, B \rightarrow \mathrm{OS}|1 \mathrm{~S}| 0$.
Test whether 010^{4} is in $N(A)$.
b) Construct a PDA accepting by empty store of the following language :
$L=\left\{a^{n} b^{m} c^{n} \mid m, n \geq 1\right\}$.
5. a) Construct a CFG that generates the language $L=\left\{w c w^{r} \mid w \in(a, b)^{*}\right\}$.
b) Reduce the following grammar to GNF :

$$
S \rightarrow A B, A \rightarrow B S, A \rightarrow b, B \rightarrow \mathrm{SA}, B \rightarrow a .
$$

c) Prove that CFLs are not closed under intersection and complement operation.
6. a) Design a TM which can multiply two positive integers. 8
b) Construct a TM that accepts the language $01^{*}+10^{*}$. 6

CS / M.Tech (CSE)/SEM-1/PGCS-1 O5@i ORO10-11
7. a) Design a turing machine that converts a binasy string into its equivalent unary string.

b) Construct a turing machine that enumerates $\left\{0^{n} 1^{n} \mid n \geq 1\right\}$. 4
c) Construct a turing machine that can accept the strings over $\{0,1\}$ containing even number of 1 's.

