	Utech
Name :	
Roll No.:	
Invigilator's Signature :	

CS/M.Tech (CSE)/SEM-1/CST-1103A4/2011-12 2011 SOFT COMPUTING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) Fuzzy IF-THEN rule is a kind of
 - a) Expert knowledge
 - b) Supervised knowledge
 - c) Unsupervised knowledge
 - d) None of these.
 - ii) $\mu_A(x)$ is a membership function whose value is within the range
 - a) [0, 1]

b) [-1, 1]

c) [1, 2]

d) [-1, 1].

40363 [Turn over

CS/M.Tech (CSE)/SEM-1/CST-1103A4/2011-12

- iii) $a \wedge b = \min(a, b)$ is an example of
 - a) Monotonicity
 - b) Intersection
 - c) Negation
 - d) Associative.
- iv) Which statement is true?
 - a) $PL(A) \ge Bel(A) > m(A)$
 - b) $PL(A) \ge Bel(A) \ge m(A)$
 - c) $PL(A) \leq Bel(A) \leq m(A)$
 - d) Bel (A) \leq PL (A) \leq m (A).
- v) Linguistic variables are always
 - a) Fuzzy

- b) Crisp
- c) Non-negative
- d) None of these.
- vi) MILORD is a
 - a) Fuzzy expert system
 - b) Neural expert system
 - c) Fuzzy Neural system
 - d) None of these.
- vii) $\mu C_l(w) = \alpha_i \mu C_i(w)$ is a rule given by
 - a) Mamdani
- b) Sugeno

c) Zadeh

d) Takaki.

40363

[Turn over

viii) Adaline is always

- a) single linear unit
- b) multiple linear unit
- c) cross linear unit
- d) none of these.

ix) Back propagation is a

- a) learning algorithm
- b) adaptive learning algorithm
- c) simple learning algorithm
- d) none of these.

x) Pixel is a

- a) picture element
- b) image element
- c) both (a) & (b)
- d) none of these.

xi) Acquisition of image is a part of

- a) image segmentation
- b) image restoration
- c) image enhancement
- d) all of these.

CS/M.Tech (CSE)/SEM-1/CST-1103A4/2011-12

(Short Answer Type Questions)

Answer any three of the following.

- 2. Write down the comparative study of classical crisp set & fuzzy crisp set. Draw its characteristic function.
- 3. Let A be a fuzzy set in U. Then the membership function of A can be expressed in terms of the characteristic function of its α cuts according to

$$\mu_{A}(x) = \sup_{\alpha \in [0, 1]} \left[\alpha \wedge \mu_{A_{\alpha}}(x) \right]$$

 $\forall x \in U_x$.

Where ${\bf \Lambda}$ denotes minimal operation and $\mu_{A_{\pmb{\alpha}}}$ is the characteristic function of the crisp

$$\operatorname{set} A_{\alpha} (\alpha - cut) = \begin{cases} 0, \text{ otherwise} \\ 1 \text{ iff } x \in A_{\alpha} \end{cases}.$$

40363

- 4. Consider a fuzzy set $A = \frac{0.1}{50} + \frac{0.3}{60} + \frac{0.5}{70} + \frac{0.8}{80} + \frac{1}{90} + \frac{1}{100}$. Calculate all the α -cuts within the universe when $\bigcup_{\alpha \in A_{\alpha}} \alpha A_{\alpha}$.
- 5. Discuss beleif & plausibility with proper example. Write its measures in the term of fuzzy relation.
- 6. Write down the usefulness of fuzzifier & defuzzifier. What is fuzzy clustering?

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. Write step function, hard limiter, unipolar sigmoidal & bipolar sigmoidal functions with proper graph representation. State Hebbian learning rule for ANN. What is perceptron learning rule? Describe Adalilne in brief. 7 + 3 + 3 + 2
- 8. Describe Back-propagation learning algorithm. Write algorithm of back-propagation rule. 8 + 7

40363 5 [Turn over

CS/M.Tech (CSE)/SEM-1/CST-1103A4/2011-12

9. What is mutation? Describe fitness sealing. Explain multipoint crossover with proper example.

Having $X = \{ p, q, r, s \} \& B = P (n)$ the focal elements of M(.), Bel(.) Pl(.) is given as

elements	m (.)	Bel (.)	Pl (.)
{ p }	0	0	0.6
{ q }	0.15	0.15	1
{ r }	0	0	0.7
{ s }	0	0	0.85
{ Pq }	0	0.15	1
{ Pr }	0	0	0.7
{ Ps }	0	0	0.85
{ qr }	0	0.15	1
{ qs }	0.15	0.3	1
{ rs }	0	0	0.85
{ pqr }	0	0.15	1
{ pqs }	0	0.3	1
{ qrs }	0.1	0.4	1
{ prs }	0	0	0.85
{ qqrs }	0.6	0	1

Calculate Bel (q), Bel (qs), Pl (pq), Pl (prs). 2+4+3+6

6

- 10. What is image segmentation? Write down the basic steps of digital image processing. What are grey seale & grey value? Describe CMYK colour model. How grey level intensity values are related with fuzzy values? 2 + 4 + 4 + 4 + 1
- 11. Write short notes on any *three* of the following: 3×5
 - a) Fuzzy partial ordering
 - b) Genetic algorithm basic steps
 - c) Zadeh's extension principle
 - d) Linguistic variables with example
 - e) Supervised, unsupervised & reinforcement learning.
 - f) Verification of the following set to satisfy De'Morgan's law $\mu_A(x) = \frac{1}{1+2x}$.