#  <br> Name : <br> Roll No. : <br> $\qquad$ -m <br> Invigilator's Signature : <br> $\qquad$ <br> CS/M.Tech (CSE)/SEM-1/CST-1103A4/2011-12 2011 <br> SOFT COMPUTING 

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
( Multiple Choice Type Questions )

1. Choose the correct alternatives for any ten of the following : $10 \times 1=10$
i) Fuzzy IF-THEN rule is a kind of
a) Expert knowledge
b) Supervised knowledge
c) Unsupervised knowledge
d) None of these.
ii) $\quad \mu_{A}(x)$ is a membership function whose value is within the range
a) $[0,1]$
b) $[-1,1]$
c) $[1,2]$
d) $[-1,1]$.

CS/M.Tech (CSE)/SEM-1/CST-1103A4/2011-12
iii) $\quad a \wedge b=\min (a, b)$ is an example of
a) Monotonicity

b) Intersection
c) Negation
d) Associative.
iv) Which statement is true?
a) $\quad \mathrm{PL}(\mathrm{A}) \geq \operatorname{Bel}(\mathrm{A})>\mathrm{m}(\mathrm{A})$
b) $\quad \operatorname{PL}(\mathrm{A}) \geq \operatorname{Bel}(\mathrm{A}) \geq \mathrm{m}(\mathrm{A})$
c) $\quad \mathrm{PL}(\mathrm{A}) \leq \operatorname{Bel}(\mathrm{A}) \leq m(A)$
d) $\operatorname{Bel}(A) \leq P L(A) \leq m(A)$.
v) Linguistic variables are always
a) Fuzzy
b) Crisp
c) Non-negative
d) None of these.
vi) MILORD is a
a) Fuzzy expert system
b) Neural expert system
c) Fuzzy Neural system
d) None of these.
vii) $\mu C_{l}(w)=\alpha_{i} \mu C_{i}(w)$ is a rule given by
a) Mamdani
b) Sugeno
c) Zadeh
d) Takaki.
CS / M.Tech (CSE)/SEM-1 / CST-1
viii) Adaline is always
a) single linear unit
b) multiple linear unit
c) cross linear unit
d) none of these.
ix) Back propagation is a
a) learning algorithm
b) adaptive learning algorithm
c) simple learning algorithm
d) none of these.
x) Pixel is a
a) picture element
b) image element
c) $\quad$ both (a) \& (b)
d) none of these.
xi) Acquisition of image is a part of
a) image segmentation
b) image restoration
c) image enhancement
d) all of these.

CS/M.Tech (CSE)/SEM-1/CST-1103A4/2011-12
GROUP - B
( Short Answer Type Guestions)


Answer any three of the following.
2. Write down the comparative study of classical crisp set \& fuzzy crisp set. Draw its characteristic function.
3. Let $A$ be a fuzzy set in $U$. Then the membership function of $A$ can be expressed in terms of the characteristic function of its $\alpha$ cuts according to $\mu_{A}(x)=\sup _{\alpha \in[0,1]}\left[\alpha \wedge \mu_{A_{\alpha}}(x)\right]$
$\forall x \in U_{x}$.

Where $\wedge$ denotes minimal operation and $\mu_{A_{\alpha}}$ is the
characteristic function of the crisp
set $A_{\alpha}(\alpha-c u t)=\left\{\begin{array}{l}0, \text { otherwise } \\ 1 \text { iff } x \in A_{\alpha}\end{array}\right.$.

# CS / M.Tech (CSE)/SEM-1/CST-1103A4/2011-12 Uresh <br> 4. Consider a fuzzy set $A=\frac{0 \cdot 1}{50}+\frac{0 \cdot 3}{60}+\frac{0 \cdot 5}{70}+\frac{0 \cdot 8}{80}+\frac{1}{90}+\frac{1}{100}$. Calculate all the $\alpha$-cuts within the universe when $\bigcup_{\alpha \in A_{\alpha}} \alpha A_{\alpha}$. 

5. Discuss beleif \& plausibility with proper example. Write its measures in the term of fuzzy relation.
6. Write down the usefulness of fuzzifier \& defuzzifier. What is fuzzy clustering?

## GROUP - C

( Long Answer Type Questions )
Answer any three of the following. $3 \times 15=45$
7. Write step function, hard limiter, unipolar sigmoidal \& bipolar sigmoidal functions with proper graph represenation. State Hebbian learning rule for ANN. What is perceptron learning rule? Describe Adalilne in brief.

$$
7+3+3+2
$$

8. Describe Back-propagation learning algorithm. Write algorithm of back-propagation rule.

$$
8+7
$$

CS / M.Tech (CSE)/SEM-1/CST-1103A4/2011-12
9. What is mutation ? Describe fitness sealing. Explain multipoint crossover with proper example. $\qquad$

Having $X=\{p, q, r, s\} \& B=P(n)$ the focal elements of $M(),$. Bel (.) Pl (.) is given as

| elements | m ( . ) | Bel ( . ) | Pl ( . ) |
| :---: | :---: | :---: | :---: |
| $\{\mathrm{p}\}$ | 0 | 0 | $0 \cdot 6$ |
| $\{\mathrm{q}\}$ | $0 \cdot 15$ | $0 \cdot 15$ | 1 |
| \{r \} | 0 | 0 | $0 \cdot 7$ |
| \{ s \} | 0 | 0 | $0 \cdot 85$ |
| $\{\mathrm{Pq}$ \} | 0 | $0 \cdot 15$ | 1 |
| \{ Pr \} | 0 | 0 | $0 \cdot 7$ |
| \{ Ps \} | 0 | 0 | $0 \cdot 85$ |
| \{ qr \} | 0 | $0 \cdot 15$ | 1 |
| \{ qs \} | $0 \cdot 15$ | $0 \cdot 3$ | 1 |
| \{ rs \} | 0 | 0 | $0 \cdot 85$ |
| \{ pqr \} | 0 | $0 \cdot 15$ | 1 |
| \{ pqs \} | 0 | $0 \cdot 3$ | 1 |
| \{ qrs \} | $0 \cdot 1$ | $0 \cdot 4$ | 1 |
| \{ prs \} | 0 | 0 | $0 \cdot 85$ |
| \{ qqrs \} | $0 \cdot 6$ | 0 | 1 |

Calculate $\operatorname{Bel}(q), \operatorname{Bel}(q s), \operatorname{Pl}(p q), \operatorname{Pl}(p r s) . \quad 2+4+3+6$
10. What is image segmentation ? Write down the basig steps of digital image processing. What are grey seale \& grey value? Describe CMYK colour model. How grey level intensity values are related with fuzzy values?
$2+4+4+4+1$
11. Write short notes on any three of the following :
a) Fuzzy partial ordering
b) Genetic algorithm - basic steps
c) Zadeh's extension principle
d) Linguistic variables with example
e) Supervised, unsupervised \& reinforcement learning.
f) Verification of the following set to satisfy De'Morgan's law $\mu_{A}(x)=\frac{1}{1+2 x}$.

