

Invigilator's Signature : \qquad
CS/M.Tech(CST)/SEM-1 /CST-1103A2/2010-11 2010-11
LOGIC \& LOGIC PROGRAMMING
Time Allotted : 3 Hours Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Objective Type Questions)

1. State whether the following statements are True or False :
i) Sentential symbols can even take real values between 0 and 1.
ii) A set of formulas which aren't satisfiable by all truth assignments can tautologically imply any formula.
iii) and \mathbb{A} form a complete set, i.e., any Boolean function can be realized by them.
iv) If $\forall x \varphi(x)$ is true, then for a minority of values of $x, \varphi(x)$ is true.
v) If $\exists x \varphi(x)$ is true, then for at least one value of $x, \varphi(x)$ is true.
vi) De-Morgan's laws are tautologies.
vii) Functions in first order logic need not take values 0 or 1 .
viii) In deductive calculus we only use proof by induction.
ix) Compactness theorem concludes about satisfiability of an infinite set from its finite subsets.
x) Every first order logic sentence can also be represented by sentential logic.

GROUP - B

(Short Answer Type Questions)
Answer any three of the following. $3 \times 5=15$
2. a) Define well-formed-formulas.
b) Check whether following two formulas are wff by checking their ancestral tree :

$$
\begin{aligned}
& \left(\left(A_{1} \text { 付 } A_{10}\right) \varnothing\left(\left(\square A_{3}\right) \vee\left(A_{8} \times A_{3}\right)\right)\right. \\
& \left(\left(A_{2} \vee A_{5}\right) \times A_{3} \vee A_{4} \text { 仆 } A_{6}\right)
\end{aligned}
$$

3. Write down truth tables of $(A \varnothing B)$ and $(A \times B)$ and explain why they are so.
4. Convert the following sentences to first order logic wff :
a) Anything anyone eats and isn't killed by is a food.
b) Hari can't do any job right.
c) $\varepsilon-\delta$ definition of limit of a function.
d) $2^{3}+1^{2}=9$.
5. What is a structure ? What is the difference between a structure and a model ? Give two models with reasons why they are so for the sentence $\exists x \forall y(\square y \quad x)$.
6. Write prolog programs for the following problems and explain with data how they work :
a) GCD of two numbers
b) Factorial of a number.

GROUP - C

(Long Answer Type Guestions)
Answer any three of the following. $3 \times 15=45$
7. a) Prove that if S is a set of wffs containing all the sentence symbols from which wffs are to be build and closed under all five formula building operations, then S is a set of all wffs on those sentential symbols.
b) Show that $\left(\left(A_{2} \varnothing\left(A_{1} \varnothing A_{6}\right)\right) \varnothing\left(\left(A_{2}\right.\right.\right.$ A $\left.\left.\left.A_{1}\right) \varnothing A_{6}\right)\right)$ is a tautology.
c) Show that the following two formulas doesn't tautologically imply the other :

d) Determine whether or not (P N Q) $\varnothing R$) tautôlogically implies (($P \varnothing R) \vee(Q \varnothing R))$.
8. a) Let $B \prod U$ and a class of functions $f: U \infty U \varnothing U$ and $g: U \varnothing U$ operate on members of U. Explain what is an inductive set S in U, define C^{*}, briefly argue why C^{*} is inductive. Define C_{*}, 6
b) Suppose $B=\{a, b, c\}$ and C is generated from B by binary operation f and unary operation g. List all the members of C_{2}. How many members might C_{3} have ? 4
c) Prove $C^{*}=C_{*}$.
9. a) Define freely generated set. Set of natural numbers and set of integers which is freely generated and which is not explain.
b) Give a proof of the fact that the set of wffs is freely generated.
c) What is meant by a valid formula in first order logic? Show that θ is valid if and only if $\forall x \theta$ is valid.
10. a) Find the clausal form of the following wff :
$\exists x \forall y(\forall z P(f(x), y, z) \varnothing(\exists u Q(x, u)$ 斗 $\exists x R(y, v))) .3$
b) i) Explain the inference rule modus ponens.
ii) What is a deduction of φ from a set of formulas Γ ?
iii) Write down the forms of logical axioms.

c) Prove deduction theorem, i.e., if $\Gamma ; \gamma$ $\Gamma \quad-\quad \gamma \varnothing \varphi$ and the contraposition theorem, i.e., if $\Gamma ; \varphi\left|\begin{array}{l} \\ \Gamma\end{array} \psi \operatorname{then} \Gamma ; \psi\right|-\longrightarrow \varphi$ 6

