Name :	
Roll No. :	
Invigilator's Signature :	

CS/M.Tech (CSE)/SEM-1/CS-905/2009-10 2009 INFORMATION AND CODING THEORY

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Answer any *five* questions. $5 \times 14 = 70$

- a) Define code rate in block code. Discuss the role of redundant words in odd and even parity block code.
 - b) An (n, n 1) single parity check code is used for error detection in a channel with bit error probability 10^{-3} . Find the maximum block length *n* such that success rate does not follow below 99%. 5
 - c) The (8, 7) single parity check code with even parity is given. Find the probability of correct decoding, a decoding error and decoding failure when p = 0.001. 5

200049

[Turn over

- a) State the condition when the code is linear. Show that any two code words from (4, 3) odd parity code fails to give a code word where the two code words from (4, 3) even parity code succeeds to give a code word. 2 + 4
 - b) Show that the generator matrix *G* and parity check matrix *H* of the (6, 3) code satisfy $GH^T = 0$. 3

i	С
000	000000
001	001110
010	010101
011	011011
100	100011
101	101101
110	110110
111	111000

c) The code words *C* have been furnished in table below :

Show that $CH^T = 0$.

5

2

- 3. a) Define cyclic code with examples.
 - b) Given the (7, 4) cyclic code with $g(x) = x^3 + x + 1$, determine systematic and non-systematic code word polynomials for the information polynomial $i(x) = x^3 + x^2 + x + 1$. Show that the systematic code word can be obtained using the quotient of $x^3 i(x) \div g(x)$ instead of the remainder. 7
 - c) Show that $x^4 + x^2 + x + 1 = 0$ modulo (x + 1) 5

200049

6

- 4. a) Differentiate additive inverse and multiplicative inverse of any number under modulo 7 prime field.
 - b) Show that modulo 8 multiplication over
 { 1, 2, 3, 4, 5, 6, 7 } fails to form a multiplicative group. 5
 - c) Show that the row vectors of the matrix :

	1	0	0	1	1	1	0]
<i>G</i> =	0	1	0	0	1	1	1
	0	0	1	1	1	0	1

are linearly independent.

5. a) Explain the generation of Galois field $GF(2^4)$ defining the field element α . 3

- b) Show that $\alpha^{15} = 1$. 4
- c) Find the determinant of the matrix $A = \begin{bmatrix} 1 & \alpha^4 & \alpha^3 \\ \alpha^2 & 0 & \alpha \\ \alpha^4 & \alpha & \alpha^5 \end{bmatrix}$ over $GF(2^3)$ and $GF(2^4)$. 7
- 6. a) Explain how BCH (Bose-Choudhuri-Hocquenghem)Code has been constructed.
- 200049 3 [Turn over

CS/M.Tech (CSE)/SEM-1/CS-905/2009-10

- b) Show that the triple error correcting binary BCH code constructed over $GF(2^4)$ has generator polynomial $g(x) = x^{10} + x^8 + x^5 + x^4 + x^2 + x + 1.$ 5
- c) Show that α , α^2 , α^3 and α^4 are roots of $g(x) = x^8 + x^7 + x^6 + x^4 + 1$, the generator polynomial of the (15, 7) double error-correcting binary BCH code, where α is a primitive field element of $GF(2^4)$. 6
- 7. Write short notes on any *two* of the following : 2×7
 - a) Reed-Solomon code over BCH code
 - b) Role of Hamming code in using code word
 - c) Function of syndrome tackle in error correction
 - d) Use of digital channel for error control coding.

200049