

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Graph sheet(s) will be provided by the Institution.

GROUP - A
 (Objective Type Guestions)

1. Answer any five questions : $5 \times 2=10$
i) Write the incidence matrix of the directed graph :
ii) Under what conditions does a graph contain an Euler trail?
iii) If L_{4} denotes a path having 4 vertices, then what is its chromatic polynomial ? Justify your answer \qquad \rightarrow
iv) Draw the ring sum of the following graphs :
v) Prove that $C(n-1, r)+C(n-1, r-1)=C(n, r)$
vi) Find the recurrence relation for the closed form expression $u_{n}=10 \cdot 5^{n}$.
vii) Using multinomial theorem, find the coefficient of $x^{2} y^{3} z^{2}$ in the expansion of $(x+y+z)^{7}$.
viii) Define stirling number of the second kind.

GROUP - B
 (Short Answer Type Questions)

Answer any three of the following.

$$
3 \times 5=15
$$

2. State and prove multinomial theorem.
3. Applying Vandermonde's identity, prove that $C(3 n, 3)=3 C(n, 3)+6 n C(n, 2)+n^{3}$.
4. Examine whether the following graphs are isomorphic:

5. Find the chromatic polynomial of the following graph :
6. Prove that a graph is a tree if and only if it is minimally connected.
```
                    GROUP - C
( Long Answer Type Questions )
Answer any three of the following. }3\times15=4
```

7. a) i) Define Bell number.
ii) Prove that $S(n, n-1)=C(n, 2)$ for $n \geq 2$ where S is the stirling number of the 2 nd kind. $2+3$

CS / ME (CSE)/SEM-1/PGCSE-101/2009-10
b) Give the combinatorial proof of the identity

$C(n, 0)+C(n, 1)+C(n, 2)+\ldots .+C(n, n)=2^{n}$
[Binomial theorem must not be used]
c) $\quad A, B$ and C are three towns. There are 5 different roads from A to B, different roads from B to C and 3 different roads from A to C. How many different ways are there to go from A to C and back again to A that visit B both while going and coming?
8. a) Prove the derangement formula :

$$
D_{n}=n!\left(1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\ldots . .+(-1)^{n} \cdot \frac{1}{n!}\right)
$$

b) Find the number of integers between 1 and 1000 inclusive that are divisible by none of 5,6 and 8.5
9. a) Solve the recurrence relation :
$u_{n}-2 u_{n-1}=6_{n}, u_{1}=2$
c) Draw if possible, the graphs having the following properties :
i) a simple graph with degree sequence
$(1,2,2,4,4)$
ii) a graph, not necessarily simple, having degree-
sequence ($1,2,2,4,5$).
[Give reasons if not possible.]
$2+3$

CS / ME (CSE)/SEM-1 /PGCSE-101/2009-10
10. a) State and prove Euler's theorem on planar graphs. 10

b) Five citizens $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}$ are members of three associations a_{1}, a_{2}, a_{3} as follows:
c_{1} is a member of $a_{1} \& a_{2}, c_{2}$ of a_{1}, c_{3} of $a_{2} \& a_{3}$,
c_{4} of $a_{2} \& a_{3}, c_{5}$ of a_{3}. Examine whether it is possible to from a committee of 3 citizens in such a way that the committee has representatives from all the three associations.
11. a) Find the maximum flow through the following network by Ford-Fulkerson's algorithm : 12

\qquad

