
 viech
 Name :
 Roll No. :
 \qquad Noman
 Invigilator's Signature :
 \qquad
 CS/M.Tech (CSE)/SEM-1/CS-908/2010-11 2010-11 FUZZY SETS AND FUZZY LOGIC

Time Allotted : 3 Hours

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 and any four from the rest.

1. Answer in short, any five of the following : $5 \times 2=10$
a) What is lattice of fuzzy number ? Give example of it.
b) Calculate the following :
i) $[-1,2]+[1,3]$
ii) $[-3,4] \times[-3,4]$
c) Explain why law of contradiction and law of exclusive middle are violated in fuzzy set theory under standard fuzzy sets operation? What is the significance of this?

CS/M.Tech (CSE)/SEM-1/CS-908/2010-11
d) What are fuzzy t-norms and t-conorms ? Give an example of each ?
e) Give the arithmetical (\times, \div) interval opertion for two intervals $I_{1}(a, b)$ and $I_{2}(c, d)$.
f) What are fuzzy tautologies ? Give an example of it.
g) What is fuzzy ignorance ? Give an example of it.
h) Distinguish between chance and fuzziness, with proper justification.
2. a) Explain the vertex method for continuous value membership function and give its algorithm.
b) Let A and B be two fuzzy numbers given by :

$$
\begin{aligned}
(x+2) / 2 & \text { for }-2<x \leq 0 \\
\underline{A}(x)=\int(2-x) / 2 & \text { for } 0<x<2 \\
0 & \text { otherwise } \\
(x-2) / 2 & \text { for } 2<x \leq 4 \\
\underline{B}(x)=\int(6-x) / 2 & \text { for } 0<x<2 \\
0 & \text { otherwise }
\end{aligned}
$$

Find the fuzzy numbers $\underline{A}+\underline{B}, \underline{A}-\underline{B}, \underline{B}-\underline{A}$ and $\underline{A} / \underline{B}$.
3. a) A "power supply" is required to convert $120 \mathrm{~V}_{\mathrm{A}} \mathrm{AC}$ to a useful voltage +5 DC. Some power supply designs employ a technique called "switching", to generate the appropriate voltages. Consider two linguistic variables, "high" and "medium", on the voltage range of 0 to 200 V AC.
"high" $=\left\{\frac{0}{0}+\frac{0}{25}+\frac{0 \cdot 01}{50}+\frac{0 \cdot 1}{75}+\frac{0 \cdot 3}{100}+\frac{0 \cdot 6}{125}+\frac{0 \cdot 7}{150}+\frac{0 \cdot 9}{175}+\frac{1}{200}\right\}$
"medium" $=\left\{\frac{0 \cdot 3}{0}+\frac{0 \cdot 5}{25}+\frac{0 \cdot 6}{50}+\frac{0 \cdot 8}{75}+\frac{1}{100}+\frac{0 \cdot 9}{125}+\frac{0 \cdot 7}{150}+\frac{0 \cdot 3}{175}+\frac{0 \cdot 1}{200}\right\}$

Find :
i) Not very high
ii) Slightly medium and very high
iii) Very, very high or very, very medium.
b) Explain Fuzzy c-Means (FCM).
4. a) Two companies bid for a contract and a committee has been constituted to review the estimates. The reviewed reports are evaluated on a non-dimensional scale and assigned a weighted score that is represented by a fuzzy membership function, as illustrated by the two fuzzy sets \underline{A}_{1} and \underline{A}_{2} in the figure below. The lowest bid has to be found out, as well as a metric to measure the combined "best" score by a logical union of membership functions. This is obtained by finding the de-fuzzified quantity using centroid method.

b) Let A be a fuzzy set defined by :

$$
\underline{A}=\frac{0 \cdot 5}{x_{1}}+\frac{0 \cdot 4}{x_{2}}+\frac{0 \cdot 7}{x_{3}}+\frac{0 \cdot 8}{x_{4}}+\frac{1}{x_{5}} .
$$

Find all \propto and string \propto cut sets of \underline{A}.

CS / M.Tech (CSE)/SEM-1/C\$-908/2010-11
5. a) In structural dynamics a particular structure that has been subjected to a shock environment may be in either of the fuzzy sets "damaged" or "undamaged", with a certain degree of membership over the magnitude of the shock input. If there are two crisp sets, functional (F) and non-functional ($N F$), then a monotone measure would be the evidence that a particular system that has been subjected to shock loading is a member of functional systems or non-functional systems. Given the evidence from two experts shown here for a particular structure, find the beliefs and plausibility for the focal elements.

Focal Elements	m_{1}	m_{2}	bel $_{1}$	bel $_{2}$	$p l_{1}$	$p l_{2}$
F	0.3	$0 \cdot 2$				
$N F$	0.6	0.6				
$F \cup N F$	$0 \cdot 1$	$0 \cdot 2$				

b) Compare Possibility and Probability Theories?
6. a) Develop a reasonable membership function for a square, based on the geometric properties of a reetangle using the Inference method.
b) For controlling speed at a newly constructed bridge a fuzzy system is being developed. A fuzzy \underline{A} on a universe of target speeds is as given below :
$A=$ "speed way over target" $=\left\{\frac{0}{T_{0}}+\frac{0 \cdot 8}{T_{0+5}}+\frac{1}{T_{0+10}}+\frac{0 \cdot 8}{T_{0+15}}\right\}$

Another fuzzy set, on a universe of braking pressures, given by :
$A=$ "apply brakes with high force" $=\left\{\frac{0 \cdot 3}{10}+\frac{0 \cdot 8}{20}+\frac{0 \cdot 9}{30}+\frac{1}{40}\right\}$

For the compound proposition, IF speed is "way over target", THEN "apply brakes with high force," find a fuzzy relation using classical implication.
7. a) Let A, B be two fuzzy sets defined on universe X, prove that

$$
\begin{equation*}
|\underline{A}|+|\underline{B}|=|\underline{A} \cup \underline{B}|+|\underline{A} \cap \underline{B}| . \tag{7}
\end{equation*}
$$

b) In designing a fuzzy washing machine, we define a universe of parameters for defining fabric $X=\left\{x_{1}, x_{2}, x_{3}\right\}$ and detergents as $Y=\left\{y_{1}, y_{2}, y_{3}\right\}$. Let \underline{A} be fuzzy set defining a fabric given by :
$\underline{A}=\left\{\frac{0 \cdot 1}{x_{1}}+\frac{0 \cdot 9}{x_{2}}+\frac{0 \cdot 0}{x_{3}}\right\}$

And \underline{B} is a fuzzy set defining a detergent given by :
$\underline{B}=\left\{\frac{0 \cdot 2}{y_{1}}+\frac{1}{y_{2}}+\frac{0 \cdot 1}{y_{3}}\right\}$

Find the relation $\underline{R}=\underline{A} \times \underline{B}$. If \underline{C} is another fuzzy set defining another detergent given by
$\underline{C}=\left\{\frac{0 \cdot 3}{x_{1}}+\frac{1 \cdot 0}{x_{2}}+\frac{0 \cdot 2}{x_{3}}\right\}$

Find the control \underline{S} of the washing machine by max-min composition.

