
Abstract

Name : Roll No.

Invigilator's Signature :

CS/M.TECH (CSE)/SEM-1/CSEM-101/2011-12

2011
DISCRETE STRUCTURES
Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

Answer any five questions.

1. Let $f: \mathrm{R} \rightarrow \mathrm{R}$ and $g: \mathrm{R}$ and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ be defined by $f(x)=x^{2}$ $+3, g(x)=x+6$, Then find the fog and $g \circ f$. 2
2. Prove that in a group $(G, O),\left(a^{-1}\right)^{-1}=a \forall a \in G$. 2
3. Examine whether the following permutation is even or odd. 2

$$
\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
6 & 5 & 4 & 3 & 1 & 2
\end{array}\right), \quad\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 1 & 4 & 7 & 2 & 5 & 8 & 6
\end{array}\right)
$$

4. Fine the number of pendant and internal vertices in a binary tree with 7 vertices.
5. Prove that there exists no graph with four edges having vertices of degree $4,3,2,1$.
6. Prove that in a ring $(\mathrm{R},+,) a .0=.0 . a 0$ for all a in R2

GROUP - B

Answer any three questions.

7. Let R be a relation defined on $\mathrm{Z} \times \mathrm{Z}$ by " $(a, b) \mathrm{R}(c, d)$ " if and only if $a+d=b+c$ for $(a, b),(c, d) \in Z \times Z$. Show that R is an equivalence relation.
8. Let S be set of all real matrices $\left\{\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right): a^{2}+b^{2}=1\right\}$. Show that S forms a commutative group under matrix multiplication.
9. If H and K are two subgroups of the group $(\mathrm{G}, o$) then
$\mathrm{HK}=\{x \in \mathrm{G}: x=$ hok, $h \in \mathrm{H}, k \in \mathrm{~K}\}$
Then prove that HK is a subgroups of G if and only if $H K=K H$.
10. Prove that the number of odd degree vertices in a graph is always even.
11. Find the number of edges in a complete graph with n vertices.

GROUP - C

Answer any three questions.
12. a) Prove that the order of each subgroup of a finite group is divisor of the order of the group.
b) Prove that every cyclic group is an Abelian group. 5
c) Prove that intersection of any two subgroups of a group (G, o) is a subgroup of G.
13. a) If A, B, C are any three subsets of a set, then prove that

$$
\begin{equation*}
A \times(B U C)=(A \times B) U(A \times C) \tag{5}
\end{equation*}
$$

b) Let H be a subgroup of a group G . Then H is normal in G if and only if

$$
\begin{equation*}
x h x^{-1} \in \mathrm{H} \forall h \in \mathrm{H} \text { and } \forall x \in \mathrm{G} . \tag{5}
\end{equation*}
$$

c) Discuss the nature of the following mapping : $2 \times 2 \frac{1}{2}=5$
i) $\quad f: \mathrm{R} \rightarrow \mathrm{R}$ defined by $f(x)=x^{3}-x, x \in \mathrm{R}$
ii) $\quad f: \mathrm{R} \rightarrow \mathrm{R}$ defined by $f(x)=|x|, x \in \mathrm{R}$
14. a) Assuming that the set E of all real numbers of the form $a+b \sqrt{2}$ with a, b are integers from a ring w.r.t. the ordinary addition and multiplication, show that E is an integral domain. Is it a field ?
b) Using generating function solve the recurrence relation $a_{n}-7 a_{n-1}+10 a_{n-2}=2 \quad \forall n>1$ and $a_{0}=3, a_{1}=3$
c) Show that $A \times(B-C)=(A \times B)-\left(A \times C^{\prime}\right)$ where C^{\prime} is the complement of C in U where U is a universal set.
15. a) Define tree. Prove that a tree with n vertices has $(n-1)$ edges.
b) Using Kruskal's algorithm find the minimal spanning tree of the following graph.

