

CS / M.TECH (CSE) SEM-1 / CSEM-101 / 2010-11 2010-11

DISCRETE STRUCTURE

Time Allotted: 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
(Very Short Answer Type Questions)
Attempt any five of the following questions: $5 \times 2=10$

1. i) Find the number of vertices in a graph with 15 edges if each vertex has degree 2 .
ii) Find the number of pendant and internal vertices in a binary tree having 7 vertices.
iii) Show that the number of edges in a complete graph with n vertices is $\frac{n(n-1)}{2}$.
iv) If $u+3 x=5,2 y-v=7$ and correlation coefficient of x and y is $0 \cdot 12$, find the correlation coefficient of u and v.
v) Examine whether the following permutation is even or odd : $\binom{12345678}{31472586}$.
vi) Prove that in a Ring $(R,+, \cdot)$ $a \cdot 0=0 \cdot a=0$ for all a in R.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.
2. Prove that a tree with n vertices has $(n-1)$ edges.
3. Draw the graph / digraph whose adjacency matrix is

$$
\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

4. Show that the number of odd degree vertices in a graph is always even.
5. Show that $A \times(B-C)=(A \times B)-\left(A \times C^{\prime}\right)$ where C^{\prime} is the complement of C in U where U is a universal set.
6. Using generating function solve the recurrence relation $a_{n}-7 a_{n-1}+10 a_{n-2}=2 \quad \forall n>1$ and $a_{0}=3, a_{1}=3$.

GROUP - C
(Long Answer Type Questions)
Answer any three of the following. $3 \times 15=45$
7. a) Define complement of a graph. Draw the complement of the following graph.

b) Find the shortest path using Dijkstra's algorithm from the vertex O to J in the following graph.

$$
7+8
$$

8. a) Find the minimal spanning tree of the following graph.

b) Show that the graphs G_{1} and G_{2} are isomorphic.

$$
8+7
$$

9. a) For two variables x and y the equations of two regression lines are $x+4 y+3=0$ and $4 x+9 y+5=0$. Identify which one is 'of y on x '. Find the means of x and y. Find the correlation coefficient between x and y. Estimate the value of x when $y=1.5$.
b) If X is a Binomial variate with parameters ' n ' and ' p ' then prove that mean is greater than variance. $8+7$
10. a) In a certain class 25% of the students failed in Mathematics, 15% failed in Chemistry, 10% failed in both Mathematics and Chemistry. A student is selected at random.
i) If he failed in Mathematics, what is the probability that he failed in Chemistry ?
ii) If he failed in Chemistry, what is the probability that he failed in Mathematics?
b) The distribution function $F(x)$ of a variate X is defined as follows

$$
\begin{aligned}
F(x) & =A, & & \infty<x<-1 \\
& =B, & & -1 \leq x<0 \\
& =C, & & 0 \leq x<2 \\
& =D, & & 2 \leq x<\infty
\end{aligned}
$$

where A, B, C, D are constants. Determine the values of A, B, C, D, given that $p(X=0)=1 / 6$ and $p(X>1)=2 / 3$.

$$
7+8
$$

11. a) Let S be the set of all real matrices $\left\{\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]: a^{2}+b^{2}=1\right\}$. Show that S forms a commutative group under matrix multiplication.
b) Assuming that the set E of all real numbers of the form $a+b \sqrt{2}$ with a, b are integers form a ring w.r.t. the ordinary addition and multiplication. Show that E is an integral domain. Is it a field ?
c) Prove that the order of each subgroup of a finite group is a divisor of the order of the group. $5+5+5$

$$
===========
$$

