
 Name:
 Roll No. :

 Invigilator's Signature :
 CS/M.TECH (CSE)/SEM-1/PGCS(MCE)-101/2011-12 2011
 ADVANCED ENGINEERING MATHEMATICS

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 and any four from the rest.

1. Answer the following questions:
$7 \times 2=14$
a) Evalute $\int_{C} \frac{d z}{z-\alpha}$, where c denote simple closed rectifiable curve $\& \alpha$ is an interior point of C.
b) Let $f(z)$ be analytic in a domain D, then show that f is constant in D if $I_{m}\{f(z)\}$ is constant in D.
c) Show that $\Delta \log f(x)=\log \left\{1+\frac{\Delta f(x)}{f(x)}\right\}$
d) If A, B, C be mutually independent event, then prove that $A \& B+C$ are independent.
e) Define extreme point of a function of two variables.
f) Show that the probability of occurrence of only one of the event $A \& B$ is $P(A)+P(B)-2 P(A B)$.
g) Prove that $P(a<x \leq b)=F(b)-F(a)$.

CS/M.TECH (CSE)/SEM-1/PGCS(MCE)-101/2011-12 © OO OQ Sh
2. a) Construct Lagrange's interpolation polynomial by using the following data :

$x:$	40	45	50	55
$y=f(x):$	15.22	13.99	12.62	11.13

Hence find $f(53)$
$4+2$
b) Salve any one of the following difference equations: $4+4$
i) $u_{x+1}-u_{x}=x^{2}+3 x$
ii) $u_{x+2}-11 u_{x+1}+30 u_{x}=\cos 2 x$
iii) $u_{x+2}-4 u_{x}=9 x^{2}$.
3. a) State Cauchy Residue theorem \& evaluate

$$
\oint_{|z|=2} \frac{z d z}{z^{4}-1} \quad 2+4
$$

b) Show that the transformation $w=\frac{2 z+3}{z-4}$ maps the circle $x^{2}+y^{2}-4 \mathrm{x}=0$ onto the straight line $4 \mathrm{u}+3=0$
c) Find the bilinear transformation that maps the points $0,1,2$ of the z-plane onto - $1, \mathrm{i}, 1$ of w -plane.
4. a) Show that $\int_{0}^{2 \pi} \frac{\cos 2 \theta}{1-2 a \cos \theta+a^{2}} \mathrm{~d} \theta=\frac{2 \pi a^{2}}{1-a^{2}},\left(a^{2}<1\right)$.
b) Use Range - Kutta method of order two to find $y(0 \cdot 2) \&$ y (0.4) given that $y \frac{d y}{d x}=y^{2}-x, y(0)=2$, by taking $h=0 \cdot 2$.
5. a) State \& prove Euler's theorem (2nd order) for homogeneous function of several variables. $2+4$
b) If $u=f(y-z, z-x, x-y)$, prove that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$.
c) If $u=\cos ^{-1}\left\{\frac{x+y}{\sqrt{x}+\sqrt{y}}\right\}$, then prove that
$x u_{x}+y u_{y}+\frac{1}{2} \cot u=0$.
4
6. a) There are two identical urns containers respectively 4 white, 3 red balls \& 3 white, 7 red balls. An urn is chosen at random and a ball is drawn from it. Find the probability that the ball is white. If the ball drawn is white, what is the probabitity that it is from the first urn?
b) Find the maxima $\&$ minima of the function $x^{3}+y^{3}-3 x-12 y+20$. Find also the saddle points if exists.
7. a) Investigate the continuity of the following functions at the given points :
i) $\mathrm{f}(x, y)=\left(x^{2}+y^{2}\right) \sin \frac{1}{x^{2}+y^{2}},(x, y) \neq(0,0)$

$$
=0,(x, y)=(0,0)
$$

at $(0,0)$.
5
ii) $f(x, y)=\frac{3 x y}{x^{2}+y^{2}}$ if $(x, y) \neq(0,0)$
$=0,(x, y)=(0,0)$
at $(0,0)$.
5
b) State the geometrical interpretation of partial derivative of a function of two independent variables.

