

Name:
Roll No. : \qquad
\qquad
Invigilator's Signature : \qquad
CS/ M.Tech(CSE)/ SE M-1/ CST-611/ 2012-13 2012

ADVANCED ENGINEERING \& MATHEMATICS

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any five from the rest taking at least two from Group - B and Group - C.
GROUP - A

1. a) Define cyclic group. Prove that "Every cyclic group is abelian but reverse is not true".
b) A function $f:(R,.) \rightarrow(R,$.$) and define that$ $f(x)=x^{2}$, Test whether f is Isomorphism or not. 5
c) Consider the following machine M_{1} :

PS	NS, Z			
	I_{1}	I_{2}	I_{3}	I_{4}
A	-	$C, 1$	$E, 1$	$B, 1$
B	$E, 0$	$F, 1$	-	-
C	$F, 0$	$F, 1$	-	-
D	-	-	$B, 1$	-
E	-	$F, 0$	$A, 0$	$D, 1$
F	$C, 0$	-	$B, 0$	$C, 1$

i) Construct a Merger table for M1

CS/M.Tech(CSE)/SEM-1/CST-611/2012-13
ii) Draw a compatibility graph for M1
iii) Obtain a closed covering of M1

iv) Construct a minimized machine M1* of M1.

$$
3+2+2+3
$$

GROUP - B

2. Construct a Mealy machine to detect the squence 1010 from a long random sequence of 0 and 1 where overlapping sequences are accepted. Convert it to Moore machine. $6+4$
3. Show that the language $\left({ }^{n}\right)^{n}$ [set of balanced parenthesis] is not regular. From the identities of regular expression prove that the following three are equivalent :
a) $\quad(011((11) *+(01) *) *) * 011$
b) $011(((1+0) 1) * 011)$ *
c) $011(((11) *(01) *) * 011) * \quad 5+5$
4. Prove that Context Free Languages are closed under concatenation. Construct an equivalent PDA for the following Context Free Grammar :

$$
\begin{aligned}
& S \rightarrow a A \\
& A \rightarrow a A B C / b B / a \\
& C \rightarrow c
\end{aligned}
$$

Convert the following grammar into GNF :

$$
\begin{aligned}
& S \rightarrow A A / a \\
& A \rightarrow S S / b .
\end{aligned}
$$

$$
2+3+5
$$

5. Design a turing machine to perform 2's complement operation on binary string. Show IDs for the string 010 and 101. Prove that the problem "Language generated by a turing machine is empty" is undecidable.

6. a) Prove that "Every group of prime order is cyelie" If the order of the groups are $15,21,35$, then identify the cyclic group.
b) Define integral domain. Prove that "A field is an integral domain".
7. a) Solve the recurrence relation

$$
a_{n}-2 a_{n-1}=3^{n}, a_{1}=5 .
$$

b) Find a formula for the general term F_{n} of the Fibonacci sequence $0,1,1,2,3,5,8,13, \ldots \quad 3+7$
8. a) Find the disjunctive normal forms of the following Boolean expression by (i) truth table method and (ii) algebraic method:

$$
f(x, y, z)=x y+y z^{\prime}
$$

b) Use the method of generating function to solve the recurrence relation :
$a_{n}=4 a_{n-1}-4 a_{n-2}+4^{n}, \quad n \geq 2, a_{0}=2, a_{1}=8$.
$5+5$
9. a) Define Dihedral $\left(D_{4}\right)$ group and permutation group. Why D_{4} is not cyclic group ? If $\sigma=\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2\end{array}\right)$, then what is the value of σ^{100} ?
b) The set $\{1,2,4,7,8,11,13,14\}$ is a group under modulo 15 . Then find the inverse of $4 \& 7$. $7+3$

