

CS/M.TECH (CSE)/SEM-1/MCSE-104/2011-12

## 2011

ADVANCED ALGORITHMS
Time Allotted: 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

## GROUP - A

Answer the following questions :

1. Solve the following recurrence : $T(n)=2 T(\sqrt{n})+\log _{2}(n)$
2. What is an optimal Huffman code for the following set of frequencies, based on the first 8 Fibonacci numbers ?
[a:1b:1c:2d:3e:5f:8g:13h:21]
3. Write the KMP algorithm for string matching with proper explanation.
4. Find the longest common sub-sequence of the following two sequences $S_{1}=B D C A B A$ and $S_{2}=A B C B D A B$, using dynamic programming.
5. Write down the recurrence relation for finding the nth Fibonacci number by dynamic programming and then solve it to prove that the time complexity of the algorithm is $O\left(\phi^{\mathrm{n}}\right)$, where $\phi$ is the divine ratio.

6. Design a backtracking algorithm to solve the Aqueens problem.

7. Explain whether the following 15-puzzle problem can be solved or not :

| 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: |
| 5 | 6 | 10 | 8 |
| 7 |  | 11 | 9 |
| 14 | 13 | 15 | 12 |

## GROUP - B

Answer the following questions :
8. For the following tail-recursive method find out the corresponding iterative method.
int fact_aux (int n , int result)
\{
if ( $\mathrm{n}==1$ ) return result;
return fact_aux(n - 1, n * result) ;
\}
9. Find an iterative solution of Tower of Hanoi problem by writing small code snippet. Test your procedure by executing a dry run with number of disks $=3$
10.


Starting from node A, find all pair shortest paths using Dijkstra's Algorithm with proper explanation.
11.


Find the distance table and corresponding routing table with proper explanation using distance vector algorithm for source node E.
12. Explain the matrix chain multiplication technique for the following matrix chain $\left(\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3} \mathrm{~A}_{4}\right)$ where,

8

$$
\mathrm{A}_{1}: 3 \times 5, \mathrm{~A}_{2}: 5 \times 8, \mathrm{~A}_{3}: 8 \times 2, \mathrm{~A}_{4}: 2 \times 6
$$

13. Find the minimum cost path starting from vertexs of a travelling salesperson in the following graph. 7

