	Utech
Name :	
Roll No.:	To State of Exemples 2nd Explored
Invigilator's Signature :	

CS/M.Tech(CSE)/SEM-1/CST-612/2011-12 2011

ADVANCED ALGORITHM & DBMS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

Question No. 1 is compulsory and answer any two of the rest.

- 1. Explain why the statement, "The running time of algorithm A is at least O (n^2)" is meaningless. 5
- 2. a) Solve the following Recurrence relation using Master's

 Theorem:
 - i) T(n) = 2T(n/2) + n
 - ii) $T(n) = 7T(n/3) + n^2$
 - iii) T(n) = 4T(n/2) + n.
 - Using the algorithm and mathematical example, prove that Fractional Knapsack problem has the Greedy choice property.

40077 [Turn over

CS/M.Tech(CSE)/SEM-1/CST-612/2011-12

- 3. a) Prove that the total running time of BFS is O(V + E). Satisfy your answer with example.
 - b) Show that for each minimum spanning tree T of G, there is a way to sort the edges of G in Kruskal's algorithm so that the algorithm returns T.
- 4. a) Dijkstra's algorithm always chooses "lightest" and "closest" vertex in V-S to add to set S. Explain.5
 - b) Given a weighted, directed graph G = (V, E) with no negative weight cycles, let m be the maximum overall pairs of vertices $u, v \mid V$ of the minimum number of edges in a shortest path from u to v (shortest path is by weight not the number of edges). Suggest a simple change to the Bellman-Ford algorithm that allows it to terminate in m+1 passes.
- 5. a) Explain Travelling saleman problem with example. 6
 - b) Compare Greedy and Dynamic programming approachwith example.9

40077 2

Question No. 6 is compulsory and answer any two of the rest.

6. Find the prime and non-prime attributes from the following schema.

Report (<u>S#,C#,</u>StudentName,DateOfBirth,CourseName, PreRequisite,DurationInDays,DateofExam, Marks,Grade).

What do you mean by composite and simple attribute? 5

- 7. a) Write ACID properties of Transaction Management System. Write a pair of transaction and check the ACID properties.
 - b) Define Homogeneous DDBMS and Heterogeneous DDBMS. 10 + 5
- 8. a) Differentiate between the following :

Relation satisfying a Functional Dependency and Functional Dependency holding on a Relation.

b) Compute the closure of the following set F of functional dependencies for relation schema $R = \{A, B, C, D, E\}$

 $A \varnothing BC$

 $CD \varnothing E$

 $B \varnothing D$

 $E \varnothing A$

c) List the candidate keys for R. Find F_c . 5 + 5 + 5

CS/M.Tech(CSE)/SEM-1/CST-612/2011-12

- 9. a) Why is a serializable schedule considered correct?

 What is the difference between conflict equivalence and view equivalence?
 - b) Every conflict serializable schedule is view serializable schedule. Explain it with an example.
 - c) How is precedence graph used for testing Serializability? Explain with an example. 5 + 5 + 5
- 10. a) Define MVD with suitable example.
 - b) Consider the following Employee table :

ENAME	PNAME	DNAME
Kumar	X	Rakesh
Kumar	Y	Rao
Kumar	X	Rao
Kumar	Y	Rakesh

Check the Employee table is in 4NF or not. If yes, write the reason and if not derive the table in 4NF.

c)	What is PJNF?	5 + 5 + 5

40077 4