

CS/M.TECH(CSE)/SEM-1/PGCS(MCE)-101/2012-13 2012

ADVANCE ENGINEERING MATHEMATICS

Time Allotted: 3 Hours
Full Marks : 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer Q. No. 1 and four from the rest questions.

1. Answer the following questions :
$7 \times 2=14$
i) Let $f=u+i v$ be analytic in a domain D. Show that f is constant in D if $\operatorname{Arg}\{f(z)\}$ is constant in D.
ii) Define a simply connected domain and give an example of such domain.
iii) Prove that $\Delta \log f(x)=\log \left\{1+\frac{\Delta f(x)}{f(x)}\right\}$, where Δ is forward difference operator.
iv) Determine the number of correct digits in the number x, given its relative error $E_{r} ; x=0.4785, E_{r}=0.2 \times 10^{-2}$.
v) Define saddle point of a function of two variables.
vi) If $A \& B$ be mutually independent event, then prove that $\bar{A} \& \bar{B}$ are also independent.
vii) Prove that $P(a<X \leq b)=F(b)-F(a)$, where $a \& b$ are real constants and X is a random variable.

CS/M.TECH(CSE)/SEM-1/PGCS(MCE)-101/2012-13
2. a) Show that the following function is not differentiable a the origin;

$$
\begin{aligned}
f(x) & =\frac{x^{2} y^{2}(y-i x)}{x^{2} y^{2}+(x-y)^{2}}, z \neq 0 \\
& =0 \text { if } z=0
\end{aligned}
$$

b) Find the bilinear transformation which transforms the points $z=1,-i,-1$ into the points $w=0, i, \infty$ and show further that the area of the circle $|z|=1$ is transformed into the half plane above the real axis in w-plane. $6+8$
3. a) i) Explain the Newton-Raphson's method for computing a simple real root of an equation $f(x)=0$.
ii) Give the geometrical significance of the method. When does the method fail ?
iii) Use this method to find a real root of the equation $3 x-\cos x-1=0$.
$3+(2+1)+4$
b) Solve the following system of equations :
$2 x_{1}-3 x_{2}+4 x_{3}=8$
$x_{1}+x_{2}+4 x_{3}=15$
$3 x_{1}+4 x_{2}-x_{3}=8$
by matrix factorization method.
4. a) State Cauchy's Residue theorem. Using this theorem to prove that $\int_{0}^{2 \pi} \frac{\sin ^{2} \theta}{a+b \cos \theta} \mathrm{~d} \theta=\frac{2 \pi}{b^{2}}\left[a^{2}-\sqrt{a^{2}-b^{2}}\right] ; a>b>0$.
b) Use Taylor's series method to compute $y(0 \cdot 25)$ correct to four decimal places if $y(x)$ satisfies the equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}+y^{2}, y(0)=0$. $7+7$
5. a) Find the maxima $\&$ minima of the function $x^{3}+y^{3}-3 x-12 y+20$. Find also the saddle points if exists.
b) State and prove Euler's theorem of several variable (1st order). Use it to prove that if $\phi(x, y)=\tan ^{-1} \frac{x^{2}+y^{2}}{x+y}$ then $x \frac{\partial \phi}{\partial x}+y \frac{\partial \phi}{\partial y}=\frac{1}{2} \sin 2 \phi . \quad 5+(2+4)+3$
6. a) There are three identical boxes, each provides with two drawers. In the first, each drawer contains a gold coin, in the third, each drawer contains a silver coin $\&$ in the second, one drawer contains a gold and the other a silver coin. A box is selected at random and one of the drawers is opened. If a gold coin is found, what is the probability that the box chosen is the second one?
b) Show that the function $f(x)$ given by

$$
\begin{aligned}
f(x) & =k(x-9)(10-x), 9 \leq x \leq 10 \\
& =0, \text { elsewhere }
\end{aligned}
$$

is a $p d f$ for a suitable value of the constant k. Find mean $\&$ variance of the distribution.
c) If X be any random variable with zero mean and unit variance, find the expectation of $X^{2} .5+(2+2+2)+3$
7. a) State the following definitions :
i) Random variable
ii) Distribution function
iii) Axiomatic definition of probability
iv) Binomial distribution with parameters n, p.
b) Show that the probability of occurrence of only one of the events A and B is
$P(A)+P(B)-2 P(A B)$

CS／M．TECH（CSE）／SEM－1／PGCS（MCE）－101／2012－13

c）A random variable X has the following probability distribution ：

$X=x_{i}:$	0	1	2	3	4	5	6	7	8
$f_{i}:$	K	$3 K$	$5 K$	$7 K$	$9 K$	$11 K$	$13 K$	$15 K$	$17 K$

i）Determine the value of K
ii）Find $P(X<3), P(X \geq 3), P(2 \leq X<5)$
iii）What is the smallest value of x for which $P(X \leq x)>0 \cdot 5$ ？

$$
(1+1+2+1)+3+(1+3+2)
$$

8．a）The regression lines for a bivariate sample are given by $x+2 y+9=0$ and $2 x+5 y+7=0$ and let $S_{x}^{2}=12$ ． Calculate the value of \bar{x}, \bar{y}, S_{y} and r ．
b）Calculate the correlation coefficient and determine the regression line of y on x and x on y for the sample ：

$x:$	7	5	4	10	3
$y:$	2	3	9	11	6

$$
8+6
$$

