

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any five questions taking at least one from each group.

Group - I

1. Use the Fourth-order Runge-Kutta method to solve the following set of differential equations assuming that at $x=0$, $y_{1}=4$ and $y_{2}=6$ Integrate to $x=2$ with a step size of $0 \cdot 5$.
$\frac{\mathrm{d} y_{1}}{\mathrm{~d} x}=-0.5 y_{1} ; \frac{\mathrm{d} y_{2}}{\mathrm{~d} x}=4-0.3 y_{2}-0.1 y_{1}$
2. Obtain the eigenvalues of the following matrix
(i) $\left[\begin{array}{rrr}1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10\end{array}\right]$
(ii) $\left[\begin{array}{ccc}3 & 2 & 5 \\ 6 & -5 & 3 \\ -24 & 38 & 2\end{array}\right]$
3. a) A copper ball is heated to a temperature of $100^{\circ} \mathrm{C}$ "Then at time $t=0$, it is placed in water which is maintained at $20^{\circ} \mathrm{C}$. At the end of 3 minutes, the temperature of the ball is reduced to $60^{\circ} \mathrm{C}$. The time rate of change of temperature T of the ball is proportional to the difference between T and the temperature of the surrounding medium. Assume that heat flows so rapidly in copper that at any time the temperature is practically the same at all points of the ball. Find the time at which the temperature of the ball is reduced to $25^{\circ} \mathrm{C}$.
b) A cynderical tank 1.60 meter high stands on its circular base of diameter 1.2 meter and is initially filled with water. At the bottom of the tank there is a hole of diameter 1.0 cm , which is opened at some instant so that water starts draining under the difference of gravity. Find the height $h(t)$ of water in the tank at any time, t. Find the time at which the tank is one-half full and completely empty. Given the velocity of water through the orifice is $v=0.61 \sqrt{2 g h}$ when, $g=980$ $\mathrm{cm} / \mathrm{sec}^{2}$.
4. Apply improved Enler - Canchy method to solve the following 'initial value problem' choosing $h=0.2$ for the differential equation $y^{\prime} x+y, y(0)=0$. Find also the exact values for $X_{n}=0,0.2,0.4,0.6,0.6,0.8$ and $1.0 \quad 14$

5. a) $\operatorname{Given} f(2)=4$
$F(2.5)=5.5$

Find the linear interpolating polynomial using (i) Lagrange interpolation, and (ii) Newton's divided difference interpolation.
b) The following values of the function $f(x)=\sin x+\cos x$ are given

x	10°	20°	30°
$f(x)$	1.1585	1.2817	1.3660

Construct the quadratic interpolating polynomial that fits the data. Hence find $f(\pi / 12)$. Compare with exact value.

$$
7+7
$$

6. Construct the divided difference table for the following data :

x	0.5	1.5	3.0	5.0	6.5	8.0
$\mathrm{f}(\mathrm{x})$	16.2	58.75	310	1310	2821	5210

Hence find the interpolating polynomial and an approximation to the value of $f(7)$. 14

7.

Use Liebman's method to solve the temperature of the heated plate as shown below, Employ overreloxation with a value of 1.5 for the weighing factor and iterate to $\xi_{s}=1 \%$
$100^{\circ} \mathrm{C}$

$80^{\circ} \mathrm{C} |$| $(1,3)$ | $(2,3)$ | $(3,3)$ |
| :---: | :---: | :---: |
| $*$ | $*$ | $*$ |
| $(1,2)$ | $(2,2)$ | $(3,2)$ |
| $*$ | $*$ | $*$ |
| $(1,1)$ | $(2,1)$ | $(3,1)$ |
| $*$ | $*$ | $*$ | $0^{\circ} \mathrm{C}$

8. Solve the system of equations
$\left(\begin{array}{cccc}2 & 1 & 1 & -2 \\ 4 & 0 & 2 & 1 \\ 3 & 2 & 2 & 1 \\ 1 & 3 & 2 & -1\end{array}\right) \quad\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right) \quad=\left(\begin{array}{c}-10 \\ 8 \\ 7 \\ -5\end{array}\right)$
using Gauss elimination method.
