	Utech
Name:	
Roll No.:	In Statement Williams Staff Staffared
Invigilator's Signature :	

CS/M.TECH(BT)/SEM-3/MBT-316D/2012-13

2012

ADVANCED INSTRUMENTATION IN BIOTECHNOLOGY

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following:

 $10 \times 1 = 10$

- i) have been utilized primarily for molecular weight determinations of molecular ions and enzymatic digests leading to structural information of proteins. Fill up with suitable word from the list:
 - a) Linear and reflectron TOF-MS
 - b) MALDI-TOF-MS
 - c) 2D gel electrophoresis.
- ii) Phase contrast depends on
 - a) diffraction
- b) spectral region
- c) source of the light
- d) condenser.

40547 [Turn over

CS/M.TECH(BT)/SEM-3/MBT-316D/2012-13

iii)

	plar	ne of object.		
	_	up with suitable word fr	om t	he following :
	a)	objective lens		
	b)	compound microscope		
	c)	eye piece		
	d)	condenser.		
iv)	,	the ODD option out :		
	a)	Gel filtration chromato	grapl	hy
	b)	Principle: molecular s	ieving	y Y
	c)	Size exclusion chroma	togra	phy
	d)	High pressure liquid cl	hrom	atography.
v)	The	solute component ha	aving	maximum interaction
	with	the stationary phase w	rill ha	ive
	a)	maximum retention tir	ne	
	b)	minimum elution time		
	c)	minimum retention tin	ne	
	d)	will not be eluted at all	l.	
vi)is used to sepa				e ionic species by their
	cha	rge and frictional forces	and i	hydrodynamic radius.
	a)	Flow cytometry		
	b)	Capillary electrophores	sis	
	c)	Isotacophoresis		
	d)	Electrosmosis.		
vii)	Full	form of HPLC is		
	a)	High Pressure Liquid (Chron	natography
	b)	High Performance Liqu	ıid Cl	nromatography
	c)	both (a) and (b)		
	d)	none of these.		
viii)	Elec	trostatic forces play a	role	in type of
	chro	omatography.		
	a)	adsorption	b)	gel-filtration
	c)	hydrophobic	d)	ion-exchange.
)547		2		

The function of is to focus the light into the

- ix) is used to separate ionic species by their charge and frictional forces and hydrodynamic radius.
 - a) Flow cytometry
 - b) Capillary electrophoresis
 - c) Isotacophoresis
 - d) Electrosmosis.
- x) works on identification of combination of scattered and fluorescent light.
 - a) Flow cytometry
 - b) Capillary electrophoresis
 - c) FACs
 - d) All of these.
- xi) Isotachophoresis is based on separation of
 - a) leading and terminating electrolytes
 - b) intermediate electrolytes
 - c) moving oil droplets in buffer
 - d) analytes in organic solvent.
- xii) Electrokinetic chromatography involves
 - a) electrosmosis
- b) electrophoresis
- c) chromatography
- d) all of these.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following

 $3 \times 5 = 15$

- 2. Give a brief description of the Capillary Zone Electrophoresis technique.
- 3. What is HPLC? Write the working principle of HPLC.
- 4. Derive an expression for measuring R_f in HPLC and mention its significance.
- 5. Define the following terms and mention the relationship among them:
 magnification, resolution, contrast.

40547

CS/M.TECH(BT)/SEM-3/MBT-316D/2012-13

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

- 6. a) Discuss the basic principle of Microarray technique.
 - b) How does microarray help in the gene expression profiling?
 - c) What do you mean by ToxBolt assay? 5 + 5 + 5
- 7. a) A solute protein is to be separated from a liquid phase in a chromatographic column. The adsorption isotherm is given by the following equation: $C_s = kC_L^2$, where C_s is the solute concentration in solid phase (mg solute/mg adsorbent) and C_L is the liquid phase concentration of solute (mg solute/mg liquid). Use the following information: $k = 0 \cdot 4$, $\epsilon = 0 \cdot 3$, $A = 25 \, \mathrm{cm}^2$, $M = 10 \, \mathrm{g}$ adsorbent/100 ml column.
 - i) For V = 400 ml and X = 25 cm determine the equilibrium solute concentration in liquid and solid phases.
 - ii) Determine the ratio of travel distance of solute to solvent \boldsymbol{R}_f .
 - b) Derive an expression to calculate the band distance ΔX . (6 + 4) + 5
- 8. a) What do you mean by forward scatter and side scatter?
 - b) Explain which an example the application of FACS in Biotechnology research.
 - c) Discuss in brief the working principle of a capillary DNA sequencer. 5+5+5
- 9. State the difference luminescence and phosphorescence. What do you mean by chemiluminescene and bioluminescence? Discuss how chemiluminescence is used for detection of a disease. 4 + 4 + 7

========

40547 4