	Utech
Name:	
Roll No.:	To the Part of the State of the
Invigilator's Signature :	

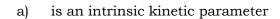
2012

BIOPROCESS ENGINEERING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.


GROUP - A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for the following: $5 \times 2 = 10$
 - The plot of rate versus substrate concentration of an enzymatic reaction gives a section of rectangular hyperbola. The system represents a
 - a) shifting order reaction
 - b) first order reaction
 - c) zero order reaction
 - d) none of these.

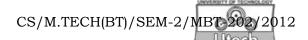
30317(M.TECH)

[Turn over

The maximum velocity (V_m) ii) in Michaelis-Menten equation

- is not an intrinsic kinetic parameter b)
- depends strongly on temperature c)
- d) none of these.

The Eadie-Hofstee plot gives slope equal to iii)


a)
$$V_m$$

b)
$$\frac{V_m}{K_m}$$

1)
$$\frac{K_m}{V_m}$$
.

Fed batch bioreactor is iv)

- an unsteady state reactor a)
- a steady state reactor b)
- an isothermal reactor c)
- none of these. d)

- v) The net effect of competition inhibition
 - a) is an increase in the maximum velocity
 - b) is a decrease in the maximum velocity
 - c) is an increase in the apparent Michaelis-Menten constant
 - d) is a decrease in the apparent Michaelis-Menten constant.

GROUP - B

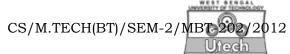
(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

- 2. Derive the rate equation of a substrate uninhibited enzymatic reaction using steady state assumption of Briggs-Halden theory.
- 3. A fermentation industry wishes to produce a valuable biochemical by maintaining maximum rate of cell growth condition as far as possible. Starting with 15·5 mg/dm³ of cells and 150 mg/dm³ of substrate, the fermentation was carried out. The yield of cell was found to be 0·65 mg cell/mg substrate. The cell growth rate was reported to be $R_c = \frac{1 \cdot 2 \, C_A \, C_C}{C_A + 2} \, \text{mg cells formed / hr. dm³, where } C_A \, \text{and } C_C$

are substrate and cell concentrations respectively. Find the maximum rate of cell growth that can be achieved at this condition.


- 4. Discuss the importance of enzyme inhibition study in pharmacology. How Eadie-Hofstee plot can be used to identify the nature of enzyme inhibition?
- 5. Derive the performance equation of a Chemostat in terms of cell concentration and residence time used for carrying out a microbial fermentation reaction following substrate uninhibited Monod equation.
- 6. Discuss in detail the cell growth curve.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. a) Discuss in detail the different methods used for evaluating the kinetic parameters of Michaelis-Menten equation. Why is direct data fit method superior to other methods?

b) The following data have been obtained for two-different initial enzyme concentrations for an enzyme-catalyzed reaction:

Substrate concentration (gm/litre)	20.0	10.0	6.7	5.0	4.0	3.3	2.9	2.5
Rate (g/l-min) with $C_{E0} = 0.015 \text{ gm/litre}$	1.14	0.87	0.70	0.59	0.50	0.44	0.39	0.35
Rate (g/l-min) with C_{E0} = 0.00875 gm/litre	0.67	0.51	0.41	0.34	0.29	×	×	×

Find the intrinsic kinetic parameters of Michaelis Menten equation by Hanes-Woolfs method.

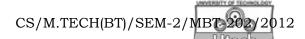
- a) Derive the performance equation of a batch fermenter used for carrying out an enzymatic reaction following Michaelis-Menten equation.
 - b) Reactant A decomposes in the presence of enzyme E. It is desired to design a batch fermenter for producing $2000 \, \text{kg} \, R/\text{day}$ from a feed containing $C_{A0} = 1000 \, \text{mol/m}^3$. The conversion of A is 90%. The plant should operate day and night and times for filling, cleaning and draining may be taken as 0.5 hrs. The molecular weight of A is 179 and the initial enzyme concentration is $10 \, \text{gm/m}^3$. Find the volume of the reactor. The reaction is A = R.

9. Carbohydrate A decomposes in the presence of Enzyme E. We also suspect that the carbohydrate B in some way influences this decomposition. To study this phenomenon various concentrations of A, B and E flow into and out of a chemostat ($V = 240 \text{ cm}^3$). From the data below find a rate equation for the decomposition and suggest a mechanism for this reaction.

Data:

C_{A0} , mol/m ³	C_A , mol/m ³	C_{B0} , mol/m ³	C_{E0} , mol/m ³	V_0 , cm ³ /min	
200	50	0	12.5	80	
900	300	0	5	24	
1200	800	0	5	48	
700	33.3	33.3	33.3	24	
200	80	33.3	10	80	
900	500	33.3	20	120	

10. Sucrose is hydrolyzed in a batch reactor in presence of the enzyme sucrase as follows:


sucrase

Sucrose ----- product

With C_{A0} = 1 mmol/litre and C_{E0} = 0.01 mmol/litre, the following data are obtained :

C_A , mmol/litre	0.84	0.68	0.53	0.38	0.27	0.16	0.09	0.04	0.018
Time, hr	1	2	3	4	5	6	7	8	9

Fit the Michaelis-Menten equation.

- 11. Write short notes on any three of the following:
 - a) Continuous sterilization of liquid media
 - b) Segregated model vs non-segregated model
 - c) Cell disruption
 - d) Substrate inhibition
 - e) Effect of external mass transfer on immobilized enzyme reaction.

=========