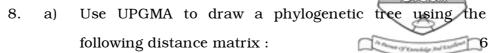
<i>Name</i> :	<u> </u>
Roll No. :	The Part of Committies and Explana
Invigilato	r's Signature :
	CS/M.Tech(MBT/PHMB/PHMC)/SEM-2/ MBT/PHMB/PHMC-205/2011
	2011
	APPLIED BIOINFORMATICS
Time Allo	tted: 3 Hours Full Marks: 70
	The figures in the margin indicate full marks.
Candide	ates are required to give their answers in their own words as far as practicable.
	Answer Question No. 1 and any six from the rest.
1. Fill	in the blanks :
i)	Low complexity regions of the query sequence are
	filtered by for nucleic acid sequences and
	by for amino acid sequences.
ii)	is used to identify distantly related
	sequences through iterative search.
iii)	is used to identify sequence patterns in
	protein sequences.
iv)	In file format the header file starts with a
	">" sign.

[Turn over

30467 (M.Tech.)

CS/N	I.Tecl	n(MBT/PHMB/PHMC)/SEM-2/MBT/PHMB/PHMC-205/2011	
	v)	may be understood as sequences and the	
		organism in which they occur have descended from a	
		common ancestor. 1	
	vi)	algorithm is for local alignment while	
		is for global alignment. 2	
	vii)	When two different genes have undergone convergent	
		evolution and given rise to proteins that have a similar	
		active site (but with a different backbone, say), they are	
		called 1	
	viii)	When there is a transfer of genetic material between	
		species that are separated through a long evolutionary	
		distances (as in case of horizontal gene transfer), it is	
		called 1	
2.	Writ	on the following : 5×2	
	a)	Dot plot	
	b)	Ramachandran plot	
	c)	Affine gap penalty	
	d)	PHI-BLAST	
	e)	PSSM.	

UNIVERSITY OF TECHNOLOGY


- 3. a) What is lods ratio? Where would you find its use?

 How would you justify its use there? 2+1+3
 - b) State how the GOR method differs from the Chou-Fasman method.
- 4. Name the different ways of predicting tertiary structure of a protein. Which one out of these requires structural knowledge of a related protein? Describe schematically the steps of the method. Is energy minimization of the model thus obtained, a necessary step? Justify your answer.

3 + 1 + 3 + 3

- 5. What is molecular docking? Mention at least two of its applications. What is SASA? What is its importance in docking? 2+2+2+4
- 6. Write down the basic criterion for a database-search algorithm. Name a very popular tool that uses heuristic method for database search. Describe briefly the algorithm followed by the tool. Define E-value for this tool and mention its significance. 1+1+5+3
- 7. a) Write down the different applications of multiple sequence alignment.
 - b) Schematically explain the sequential steps of CLUSTALW.
 - c) Describe the sum of pairs method.

CS/M.Tech(MBT/PHMB/PHMC)/SEM-2/MBT/PHMB/PHMC-205/2011

	Human	Chimpanzee	Gorilla	Orang-utan	Gibbon
Human		0.015	0.045	0.143	0.198
Chimpanzee	_	_	0.030	0.126	0.179
Gorilla	_	_	_	0.092	0.179
Orang-utan	_	_	_	_	0.179
Gibbon	_	_	_	_	_

- b) How is this method different from that of the Neighbourjoining method? 2
- c) Write in brief how a phylogenetic tree using the maximum parsimony method, is drawn.