	Utech
Name :	
Roll No.:	···· Comment on the
Invigilator's Signature :	

CS/M.Tech (BT-OLD)/SEM-1/MBT-101/2010-11 2010-11

ADVANCES IN BIOREACTOR DESIGN, DEVELOPMENT & SCALE-UP

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) Plug flow behaviour of a reactor may be predicted if the flow is
 - a) laminar
- b) turbulent
- c) intermediate
- d) viscous flow.
- ii) Volumetric mass transfer in a CSTR is given as a function
 - a) P/V
 - b) Ugs
 - c) Re_I
 - d) combination of (a) & (b).

40525 [Turn over

CS/M.Tech (BT-OLD)/SEM-1/MBT-101/2010-11

- Animal cell culture is best carried out in a reactor
 - **CSTR** a)
 - Bubble column b)
 - c) Airlift fermentor
 - Hollow fibre biological reactor (HFBR). d)
- Kinetics of alcohol production is based on the model of iv)
 - a) Growth associated
- b) Non-growth associated
- Luedeking-piret model d) c)
- Monod model.
- v) High flow rates of a gas are measured by
 - a) Rotameter
- b) Orifice meter
- c) Wet-gas meter
- d) Thermo-anemometer.
- vi) The scale-up of a CSTR for animal cell culture should be based on constant
 - P/Va)

b) impeller tip speed

c) Re_{I}

- d) mixing time.
- Trickle bed reactor in biotechnology is used for vii)
 - alcohol production a)
 - antibiotic production b)
 - waste water treatment c)
 - animal cell culture. d)
- viii) In a plus flow reaction $\frac{L}{D}$ ratio should be

b) $\frac{L}{D} < 1$ d) $\frac{L}{D} > 3$.

- ix) Cheapest reactor for aerobic fermentation is
 - a) CSTR
 - b) bubble column
 - c) airlift framenter
 - d) fluidized bed.
- x) Human blood is an non-Newtonian fluid of the type
 - a) Pseudoplastic
 - b) Bingham plastic
 - c) Dilatant
 - d) Cassan eguation.
- xi) The design parameter of a chemostat is given by
 - a) specific growth rate
 - b) dilution rate
 - c) RTD
 - d) combination of (a) & (b)
- xii) Monod model A behaves as a zero order reaction if
 - a) Rs << S
 - b) $Rs \gg S$
 - c) Rs = S
 - d) $\mu \max = Rs$.

CS/M.Tech (BT-OLD)/SEM-1/MBT-101/2010-11

(Short Answer Type Questions)

Answer any three of the following.

2. A clindrical tank of diameter of 1.0 m is filled with water. The tank is agitated with 0.3 m impeller diameter with flat six blade disk. The impeller rotational speed, N=180 rpm. The air enters from the bottom at the rate of 0.005 m $^3/s$ at 1.08 bar at 25° C. Calculate power requirement of the system.

For $\text{ReI}_{\text{C}} > 10^4$, $N_P = \frac{P}{P N^3 D_I^5} = 6$. Assume that the properties of the liquid are the same as those of water.

- 3. Describe the operation of an airlift fermenter with internal loop and discuss its principal merits.5
- 4. A reactor is to be scaled up from a $1.0~\text{m}^3$ to $1000~\text{m}^3$. The small reactor has a $\frac{L}{D}$ = 3.0. The impeller diameter is 30% of the tank diameter agitator speed of the smaller tank is 500 rpm.

Determine the dimensions of the large fermenter ($L,\ D_t,\ D_I$) and agitator speed for constant $\frac{P}{V}$.

40525 4

- 5. Describe the dynamic method of determination of k_L for aerobic fermentation.
- 6. What conc. of competitive inhibitor is required to yield 75% inhibition at a substrate conc. of $1.5 \times 10^{-3} \, \mu$ if $k_m = 2.9 \times 10^{-4} \, \mu$ and $k_i = 2 \times 10^{-5} \, \mu$.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. A CSTR of volume $1 \, \mathrm{m}^3 \left(L/D_t = 1 \cdot 5 \right)$ and $D_I = 0 \cdot 3 \, D_t$ is equipped with four baffles and is agitated at a speed of 300 rpm. The air enters from the bottom of the reactor at the rate of $0 \cdot 02 \, \mathrm{m}^3/\mathrm{s}$ at $1 \cdot 08$ bar and 25° C. The sauter-mean diameter of the bubbles, $D_{32} = 4 \, \mathrm{mm}$, $E_G = 0 \cdot 03$. Calculate the following:
 - i) bubble rise velocity, u_b
 - ii) interfacial area, a $\left(m^2/m^3\right)$
 - iii) volumetric mass transfer coefficient, k_{La}

Given:

$$k_{La} = 0.026 (P/V)^{0.4} (V_{gs})^{0.5} \text{ sec}^{-1} \text{ where } P/V \text{ in } w/m^2.$$
 15

CS/M.Tech (BT-OLD)/SEM-1/MBT-101/2010-11

- 8. a) What are the merits and demerits of a bubble column reactor when it is used for aerobic microbial fermentations?
 - b) An aerobic fermenter with good agitator speed in sparged with air for the growth of *E.Coli*. The oxygen uptake rate of *E.Coli* is 10 m mol/(g cell) (hr) and the estimated k_{La} value is 30 hr⁻¹. The critical dissolved oxygen concentration is 0.2 mg/L. The solubility of oxygen is 7.5 mg/L at 30° C. What can maximum concentration of *E.Coli* (X) be sustained in this fermater under aerobic condition?
- 9. a) Derive an expression for a plug flow reactor with axial dispersion. How do you calculate conversion from such a model?
 - Explain the operation of a hollow fibre membrane reactor for the production of a therapeutic protein using a perfusion system.
- 10. a) What are the different types of non-Newtonian fluids?

 Draw their shear stress and strain diagram on the basis of power low model.
 - b) For a reaction of the type, $A \rightarrow R$ and $-r_A = 0.1 \, C_A \, \mathrm{k \; mol/(m^3)(min)}$ in a reactor vessel whose tracer data due to pulse input gave $\delta_6^2 = 0.15, \, \bar{t} = 12 \, \mathrm{minutes}$. Calculate conversion X_A from tanks in series model.

40525 6

CS/M.Tech (BT-OLD)/SEM-1/MBT-101/2010

- 11. Write short notes on any three of the following:
 - a) Bioreactor control with instrumentation
 - b) Characteristic features of reactors for animal cell culture
 - c) Scale-up criteria for biological reactors
 - d) Growth recombinant cells with plasmid vectors.
- 12. a) Calculate V_i and the degree of inhibition caused by a competitive inhibition under the following conditions:
 - i) [S] = 0.00002 M and [I] = 0.00002 M
 - ii) [S] = 0.0004 M and [I] = 0.00003.
 - b) Calculate K_i for a non-competitive inhibitor if $[I] = 2 \times 10^{-4}$ M yield 75% inhibition of an enzyme catalyzed reaction.
 - c) Describe and compare the functioning of galvanic and polarographic oxygen electrode.
 - d) Explain how the rate of mass transfer affects the growth rate of microbes in an aerobic process.
 15
- 13. a) Define chemostat and turbidostat. Derive Monod chemostat model from mass balance equation. Develop washout condition and show the final result with the help of a graphical plot.
 - b) With the help of schematic diagram [External Loop and Internal Loop Airlift React (ALR)]. Explain the operation of the ALR. 10 + 5

40525