
 Name :
 Roll No. :
 \qquad Invigilator's Signature :
 CS/M.Tech (AUE)/SEM-2/MAE-201/2013 2013
 INDUSTRIAL ROBOTICS

Time Allotted : 3 Hours

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
Answer any seven of the following. $7 \times 2=14$

1. a) Define Robot and state the law of Robot.
b) What is Industrial Automation ? What are its types ?
c) Define repeatability, resolution of a robot.
d) What is robot wrist ? Show pitch, yaw and roll motion of a robot wrist with a sketch.
e) Define robot kinematics and classify it.
f) What do you mean by open loop and closed loop control system?
g) What is joint co-ordinate system and world co-ordinate system?
h) Write down the criteria for selecting drive system.
i) What is vacuum griper ?
j) Write down the basic component of Robot.

CS / M.Tech (AUE)/SEM-2 / MAE-201/2013

Answer any four of the following. $\quad 4 \times 14=56$
2. Explain different types of griper with a suitable sketch.
3. A mobile body reference frame $O A B C$ is rotated about 60° about $O Y$ axis of the fixed reference frame $O X Y Z$. If $P_{x y z}=(2,4,6)^{T}$ and $Q_{x y z}=(3,5,7)^{T}$ are the co-ordinates with respect to $O X Y Z$ frame, what are the corresponding co-ordinates of P and Q with respect to $O A B C$ frame?
4. A triangular prism with co-ordinates of its vertices indicates relative to the fixed reference $O X Y Z$ is shown in figure. The prism is moved to the new position with a rotation of $+90^{\circ}$ about X-axis, a rotation of $-90^{\circ} Z$-axis and a translation of 5 units in the y-direction. Determine
a) The homogeneous transformation matrix describing the change in position of the prism.
b) The new co-ordinates of the vertices of the prism.

5. The mechanical gripper uses friction to grasp a part weight 25 N , the co-efficient friction between the part and the gripper pad shown in figure is $0 \cdot 3$. The gripper is accelerating down with a acceleration $9.81 \mathrm{~m} / \mathrm{s}^{2}$. The diameter of the piston of pneumatic cylinder is 65 mm . Assume a factor of safety $=1.5$ and assume the lengths $L_{1}=60 \mathrm{~mm}, L_{2}=40 \mathrm{~mm}$, $L_{3}=15 \mathrm{~mm}, L_{4}=45 \mathrm{~mm}$.

Calculate the following :
a) The gripping force to retain the part
b) Actuation force required to achieve this gripping force
c) The pressure of air need to operate the piston
d) The power required if the discharge is $0.015 \mathrm{~m}^{3} / \mathrm{s}$.

CS / M.Tech (AUE)/SEM-2/MAE-201/2013

6. Why sensors are used in robot ? Give the classification of sensor with example. What is binary sensor, analog sensor and proximity sensor?
$3+4+7$
7. Write short notes of the following :
a) Robot vision
b) Euler's angle representation
c) Vacuum griper
d) Kinematics of 2 DOF robots.

