ENGINEERING \& MANAGEMENT EXAMINATIONS, JANUARY - 2008 ADVANCED ENGINEERING MATHEMATICS

SEMESTER - 1

Time : 3 Hours]
[Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer Questions No. 1 and any six questions from the rest.

1. Answer any five questions from the following :
a) Examine whether the matrix $\frac{1}{\sqrt{5}}\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]$ is an orthogonal matrix or not.
b) When are two vectors of an inner product space said to be orthogonal to each other?
c) Prove the change of scale property of a Fourier transform.
d) What is a wavelet ?
e) Find the Laplace transform of $f(t)=e^{-t} \cos 3 t$.
f) Give the mathematical expression for the convolution sum of two sequences of discrete time signals.
g) Give an example of the transition probability matrix of a random walk with reflecting barriers having 5 states.
h) Define autocorrelation and autocovariance in a stochastic process.
2. a) Define linear dependence and independence of vectors.
b) Examine whether the vectors ($1,2,3$), (2, 3, 1), ($-3,-4,1$) are linearly independent.
c) Define linear span of a set of vectors. $2+6+2=10$
3. a) What do you mean by orthogonal diagonalisation ?
b) What do you mean algebraic multiplicity and geometric multiplicity of an eigenvalue of a matrix ?
c) Find a matrix P such that $P^{-1} A P$ is a diagonal matrix where $A=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$. $2+2+6=10$
4. a) Define 'norm of a vector' and 'unit vector' in an inner product space.
b) \quad In R^{3} let $\alpha=\left(a_{1}, a_{2}, a_{3}\right), \beta=\left(b_{1}, b_{2}, b_{3}\right)$. Determine whether the mapping
$R^{3} \times R^{3} \rightarrow R$ defined by
$(\alpha, \beta)=a_{1} b_{1}+\left(a_{2}+a_{3}\right)\left(b_{2}+b_{3}\right)$ is a real inner product or not.
c) Examine whether $T: R^{3} \rightarrow R^{3}$ defined by
$T(x, y, z)=(x+2 y+3 z, 3 x+2 y+z, x+y+z),(x, y, z) \in R^{3}$ is a linear transformation or not.
5. a) Find the Fourier cosine series of the function
$f(x)=x$ in $0<x<L$.
b) Given $x^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}(-1)^{n} \frac{\cos n x}{n^{2}},-\pi<x<\pi$, prove that

$$
\sum_{n=1} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}
$$

(Parseval's formula may be used).
6. Find the Fourier transform of $f(x)=e^{-|x|}$ and deduce that

$$
\int^{\infty}\left(\frac{\cos x t}{1+t^{2}}\right) \mathrm{d} t=\frac{\pi e^{-|x|}}{2} .
$$

0
7. a) Prove the following property of Laplace transform :
$L\left[t^{n} f(t)\right]=(-1)^{n} \frac{\mathrm{~d}^{n}}{\mathrm{ds}^{n}} F(s)$.
b) Using Laplace transform solve the following initial value problem :
$y^{\prime \prime}-2 y^{\prime}+2 y=e^{-t}, y(0)=0, y^{\prime}(0)=1$.
8. a) Apply convolution theorem to evaluate the following inverse Laplace transform :

$$
L^{-1}\left\{\frac{1}{s\left(s^{2}+4\right)}\right\} .
$$

b) Find the Z-transform of the sequence $\left\{a_{n}\right\}, n=0,1,2$, \qquad where $a_{n}=(n-1)^{2}$. $4+6=10$
9. a) Determine the convolution of the following two signals : The impulse response of an LTI system given by $h(n)=\{1, \underset{\uparrow}{2}, 1,-1\}$ and the input signal given by $x(n)=\{\underset{\uparrow}{1}, 2,3,1\}$.
b) Use Z-transform to solve the following difference equation :

$$
y_{n+2}+3 y_{n+1}+2 y_{n}=0, y_{0}=2, y_{1}=4 . \quad 5+5=10
$$

10. a) Define Strict Sense Stationary (SSS) and Wide Sense Stationary (WSS) stochastic process.
b) An FM station is broadcasting a tone, $x(t)=100 \cos \left(10^{8} t\right)$ to a large number of receivers. The amplitude and phase of the received wave-form are functions of distance between the transmitter and the receiver and so are RVs. The ensemble of received waveforms is a stochastic process $X(t)$ where $X(t)$ =
$A \cos \left(10^{8} t+\theta\right), A$ and θ being RVs. If A be constant and θ be uniformly distributed in [$0,2 \pi$] then show that $\{X(t)\}$ is WSS. $4+6=10$
11. a) The transition probability matrix of a Markov chain $\left\{X_{n}\right\}, n=0,1,2,3, \ldots \ldots$. having three states $1,2,3$ is

$$
P=\left|\begin{array}{ccc}
0 \cdot 1 & 0.5 & 0.4 \\
0.6 & 0.2 & 0.2 \\
0.3 & 0.4 & 0.3
\end{array}\right|
$$

and the initial probability vector is $p^{(0)}=(0 \cdot 7,0 \cdot 2,0 \cdot 1)$.
Find (i) $P\left(X_{2}=3\right)$, (ii) $P\left(X_{3}=2, X_{1}=3, X_{2}=3, X_{0}=2\right)$.
b) A man tosses a fair coin untill three heads occur in a row. Let $X_{n}=k$ if at the n-th trail the last tail occurred at the $(n-k)$-th trial, i.e. X_{n} denotes the longest string of heads ending at the n-th trial. Show that the process in Markovian. Find the transition matrix. Also determine whether the chain is irreducible and aperiodic.

