CS/M.Tech/CE/GEO/Odd/SEM-1/GTE-104B/2018-19

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: GTE-104B

FINITE ELEMENT METHODS IN GEOTECHNICAL ENGINEERING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group - A

(Multiple Choice Type Questions)

1. Choose the correct alternative for any ten of the following:

 $1 \times 10 = 10$

nttp://www.makaut.com

- (i) LLIB indicates
 - (a) two dimensional array

(b) three dimensional array

(c) LNC array

(d) None of these

- (ii) Dummy index is a
 - (a) repeated index

(b) non-repeated index

(c) Both (a) and (b)

- (d) None of these
- (iii) Mathematical models of a process are developed using the following assumption(s):
 - (a) working process

- (b) appropriate axioms
- (c) governing law of the process
- (d) All of these
- (iv) Approximate solution of structural problems implies
 - (a) Functional approximation

(b) Finite difference method

(c) Finite Element method

(d) All of these

9222

CS/M.Tech/CE/GEO/Odd/SEM-1/GTE-104B/2018-19

(v) Semi discrete Finite Element Models involv	ve
(a) approximation of spatial variation of the	e dependent variable.
(b) construction of the weak form of the equ	uation over a typical element.
(c) development of finite element model by	seeking approximation.
(d) All of these	
(vi) The well-known functional approximation n	nathods are
(a) Galerkin	(b) Rayleigh-Ritz
(c) Collocation	(d) All of these
(vii) Surface force	
(a) acts on the boundary surface.	(b) expressed as force per unit area.
(c) express as force per unit volume.	(d) Both (a) and (b)
(viii) FEM1D is useful for finite element program	associated with
(a) heat transfer	(b) solid mechanics
(c) Both (a) and (b)	(d) None of these
(ix) "In this interpolation function slope of the fur Then the function is	action takes the similar value of given function."
(a) Hermitian type of function	(b) Lagrange interpolation function
(c) Both (a) and (b)	(d) None of these
(x) Basic approach to substructure technique of freedom depends on	corresponding to internal and boundary degrees of
(a) stiffness matrix	(b) displacement vector
(c) load vector	(d) All of these
(xi) In super element approach each substructure is	s treated as
(a) complex element	(b) single element
(c) Both (a) and (b)	(d) None of these

http://www.makaut.com

http://www.makaut.com

CS/M.Tech/CE/GEO/Odd/SEM-1/GTE-104B/2018-19

Group - B (Short Answer Type Questions) Answer any three of the following.

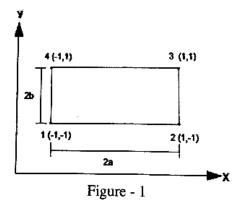
 $5 \times 3 = 15$

- 2. Correlate finite element method and geotechnical engineering.
- 3. What is Shape Function?

http://www.makaut.com

4. Depicts on plane stress, plain strain and principal of virtual work.

1+1+3=5


- 5. Discuss on the basic steps involved in the Finite Element Method of analysis.
- 6. What is potential energy of a system?

Group - C (Long Answer Type Questions)

Answer any three of the following.

15×3=45

7. Derive the shape function for the first order rectangular element as shown in Figure 1.

- **8.** (a) Discuss about isoparametric formulation.
 - (b) Evaluate the Jacobian Matrix for four noded two-dimentional element.

5+10=15

- 9. (a) Prove that the total potential energy is the summation of external potential energy and strain energy.
 - (b) Also define the minimization concept of total potential energy in connection with this.

10+5=15

10. Briefly classify and elaborate the static boundary condition for a deformable body under equilibrium.