	Utech
Name:	
Roll No.:	As Against 15' Exemple for Stall Experience
Invigilator's Signature :	

CS/M.Sc.(Info.Sc.)/SEM-1/MI-102/2012-13 2012

DATA STRUCTURE WITH C/C++

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for the following : $10 \times 1 = 10$
 - Two main measures for the efficiency of an algorithm are
 - a) processor and memory
 - b) complexity and capacity
 - c) time and space
 - d) data and space.
 - ii) The complexity of linear search algorithm is
 - a) O(n)

b) $O(\log n)$

c) O(n2)

- d) $O(n \log n)$.
- iii) Which of the following data structures are not linear data structures?
 - a) Arrays

- b) Linked lists
- c) Both of these
- d) None of these.

40141 Turn over

CS/M.Sc.	(Info.	Sc.)/SEM-1/MI-102/2012	-13	OO. Unedh
iv)	Binary search algorithm cannot be applied to			
	a)	sorted linked list	b)	sorted binary trees
	c)	sorted linear array	d)	pointer array.
v)	The data structure which allows deletions at both ends			
	of the list but insertion at only one end is			
	a)	input-restricted deque		
	b)	b) output-restricted deque		
	c)	priority queues		
	d)	none of these.		
vi)	A binary tree whose every node has either zero or two			
	children is called			
	a)	complete binary tree	b)	binary search tree
	c)	extended binary tree	d)	none of these.
vii)	A binary tree can easily be converted into q 2-tree			
	a)	by replacing each of internal node	empt	y sub-tree by a new
	b)	by inserting an interna	al no	de for non-empty node
	c)	by inserting an extern	al no	de for non-empty node
	d)	by replacing each external node.	empt	y sub-tree by a new
viii)		post order traversal od d out the pre-order trav		binary tree is DEBFCA.
	a)	ABFCDE	b)	ADBFEC
	c)	ABDECF	d)	ABDCEF.

- ix) The elements of an array are stored successively in memory cells because
 - a) by this way computer can keep track only the address of the first element and the addresses of other elements can be calculated
 - b) the architecture of computer memory does not allow arrays to store other than serially
 - c) both of these
 - d) none of these.
- x) The situation when in a linked list START = NULL is
 - a) underflow
- b) overflow
- c) houseful
- d) saturated.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. What is BST? Prove that the maximum number of nodes in a binary tree of depth k is $2^k 1$.
- 3. Compare linked list with array in respect of both advantages and disadvantages.
- 4. What are the rules of deletion in BST? Explain with examples.
- 5. What is circular queue ? Write insertion algorithm for circular queue.
- 6. Convert the following infix expression to postfix expression using stack.

$$(A + B)^* C - (D - E) / (F + G)$$

GROUP - C

(Long Answer Type Questions)

Answer all of the following.

- 7. Write short notes on any *three* of the following :
- 3×5

- a) Divide and conquer
- b) ADT
- c) Tower of Hanoi
- d) Merge sort complexity
- e) De-queue.
- 8. a) Create a binary tree using following traversal sequences:

Inorder: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Preorder: 7, 1, 0, 3, 2, 5, 4, 6, 9, 8, 10

- b) What is threaded binary tree?
- c) Delete 12 from the given tree and then draw threaded binary tree. 5 + 2 + 4 + 4
- 9. a) How can a polynomial such as $6x^4 13x^2 + 7x + 3$ be represented by a linked list?
 - b) Arrange the following unsorted list using quick sort. Elements are: 42, 33, 23, 74, 44, 67, 49.
 - c) Explain the complexity of Binary Search Algorithm.

4

5 + 7 + 3

40141