

CS/MCA/SEM-5/MCAE-504A/2012-13

2012

COMPILER DESIGN
Time Allotted: 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
(Multiple Choice Type Questions)

1. Choose the correct alternatives for any five of the following :

$$
5 \times 2=10
$$

i) If G is $S \rightarrow a S / b S / a / b$, then $L(G)$ is :
a) $\{a, b\}^{*}$
b) $\{\mathrm{a}, \mathrm{b}\}^{+}$
c) $\{a, b, S\}$
d) None of these.
ii) Context free grammar is accepted by :
a) Turing Machine
b) Finite Automata
c) Push Down Automata
d) None of these.
iii) A symbol table is a :
a) Compilation phase
b) Error handler
c) Data structure
d) None of these.
iv) Bottom up parsing is a right choice to handle a larger class of grammar.
a) True
b) False
c) Not always
d) Irrelevant.
v) The difference between DAG and Syntax tree hes in the fact that :

a) A node in a Syntax tree for a common sub expression has more than one parent
b) A node in a DAG for a common sub expression has more than one parent
c) A node in a Syntax tree for a common sub expression may have more than one parent.
vi) What is not the phase of a compiler ?
a) Syntax analyzer
b) Code generator
c) Code optimizer
d) Code linker.
vii) What is the first phase of a compiler ?
a) Code generator
b) Code optimizer
c) Lexical analyzer
d) Syntax analyzer.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. $3 \times 5=15$
2. Generate 3 address code for the following program segment

$$
\begin{aligned}
& \text { sum }=0 ; \\
& \text { for }(j=1 ; j<=10 ; j++) \\
& \text { sum=sum }+a[j]+b[j]
\end{aligned}
$$

3. a) What do you mean Left recursion ?
b) Eliminate the left recursion from the following grammar:

$$
\begin{aligned}
& S \rightarrow(L) / a \\
& L \rightarrow L, S / S
\end{aligned}
$$

$$
2+3
$$

4. Compare different implementation of 3 - address code,
5. a) What is DAG ?

Mich

b) Draw the DAG for the following expression

$$
a+(b * d)+c^{*}(b * d)+e+a /(b * d)
$$

6. Find out FIRST and FOLLOW for the following grammar :

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} / \mathrm{T} \\
& \mathrm{~T} \rightarrow \mathrm{TF} / \mathrm{F} \\
& \mathrm{~F} \rightarrow \mathrm{~F}^{*} / \mathrm{a}
\end{aligned}
$$

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15=45$
7. a) A grammar is given below :
$S \rightarrow \operatorname{aS}|\operatorname{aSbS}| \epsilon$
Show that the grammar is ambiguous by constructing two parse trees and two leftmost derivations for abb.
b) Consider the following grammar :
$\mathrm{S} \rightarrow \mathrm{CC}$
$\mathrm{C} \rightarrow \mathrm{cC} \mid \mathrm{d}$
Construct the canonical collection of LR(1) items for this grammar.
$8+7$
8. a) Draw the DAG for the expression
$a+a *(b-c)+(b-c) * d$
b) What is syntax tree ?
c) Write the three address code for the following :

$$
\begin{aligned}
& \text { for }(i=1 ; i<10 ; i++) \\
& \text { if }(a<10) \\
& \qquad a=a+b \\
& \text { else } \\
& \qquad a=a-b
\end{aligned}
$$

d) What are the rules to compute FIRST and FQLEOW ?

$$
5-3+2+5+5
$$

9. Briefly explain each of the following with example $5 \times 3=15$
i) Constant Folding
ii) Common sub expression elimination
iii) Dead code elimination
iv) Loop unrolling
v) Code motion.
10. Write short notes on the following (any three) : $3 \times 5=15$
a) Three address code
b) Peephole optimization
c) Basic Block
d) Symbol table.
11. a) Discuss the procedure to convert a regular expression to corresponding NFA with figure, and hence convert the following regular expression to NFA :

$$
(\mathrm{a} \mid \mathrm{b})^{*}(\mathrm{ab})^{*} \text { aabb }
$$

b) Eliminate the left recursion of the following productions:
bexpr-> bexpr or bterm|bterm
bterm-> bterm and bfactor|bfactor
bfactor -> not bfactor | (bexpr) |true |false and hence find out the FIRST and FOLLOW of the above productions.

