QUANTITATIVE METHODS – II (SEMESTER - 2)

CS/MBA (O)/SEM-2 (FT & PT)/MB-203/09 1. Signature of Invigilator Reg. No. 2. Signature of the Officer-in-Charge Roll No. of the Candidate CS/MBA (O)/SEM-2 (FT & PT)/MB-203/09 **ENGINEERING & MANAGEMENT EXAMINATIONS, MAY - 2009 QUANTITATIVE METHODS – II (SEMESTER - 2)** Time : 3 Hours] [Full Marks: 70

INSTRUCTIONS TO THE CANDIDATES :

- This Booklet is a Question-cum-Answer Booklet. The Booklet consists of 36 pages. The questions of this 1. concerned subject commence from Page No. 3.
- 2. a) In **Group** – \mathbf{A} , Questions are of Multiple Choice type. You have to write the correct choice in the box provided against each question.
 - For Groups B & C you have to answer the questions in the space provided marked 'Answer b) Sheet'. Questions of Group - B are Short answer type. Questions of Group - C are Long answer type. Write on both sides of the paper.
- Fill in your Roll No. in the box provided as in your Admit Card before answering the questions. 3.
- 4. Read the instructions given inside carefully before answering.
- 5. You should not forget to write the corresponding question numbers while answering.
- Do not write your name or put any special mark in the booklet that may disclose your identity, which will 6 render you liable to disqualification. Any candidate found copying will be subject to Disciplinary Action under the relevant rules.
- 7. Use of Mobile Phone and Programmable Calculator is totally prohibited in the examination hall.
- You should return the booklet to the invigilator at the end of the examination and should not take any 8 page of this booklet with you outside the examination hall, which will lead to disqualification. 9
 - Rough work, if necessary is to be done in this booklet only and cross it through.

No additional sheets are to be used and no loose paper will be provided FOD OFFICE USE / EVALUATION ONLY

	FOR OFFICE USE / EVALUATION ONLI																
	Marks Obtained																
			Gr	oup	– A					Gro	up –	В	Gro	oup -	- C		
Question Number																Total Marks	Examiner's Signature
Marks Obtained																	

Head-Examiner/Co-Ordinator/Scrutineer

2

[Full Marks : 70

ENGINEERING & MANAGEMENT EXAMINATIONS, MAY – 2009 QUANTITATIVE METHODS – II OO SEMESTER – 4

Time : 3 Hours]

GROUP – **A**

(Multiple Choice Type Questions)

1.	Choo	ose th	e correct alternatives for any ten	of the	following :	$10 \times 1 = 10$
	i)	For a	a Poisson distribution $P(x) = e^{-\xi}$	$5\frac{\left(5\right)^{x}}{x!},$	the mean value is	
		a)	2	b)	5	
		c)	10	d)	none of these.	
	ii)	For a	a normal distribution if μ = 30, t	hen its	mode is	
		a)	15	b)	30	
		c)	60	d)	none of these.	
	iii)	The	standard error of the sample me	ean ba	sed on an SRSWOR sample	of size n is
		a)	$\frac{\sigma}{\sqrt{n}}$	b)	$\sqrt{\frac{N-n}{N-1}} \cdot \frac{\sigma}{\sqrt{n}}$	
		c)	$\sqrt{\frac{N-1}{N-n}} \cdot \frac{\sigma}{\sqrt{n}}$	d)	$\sqrt{1-rac{n}{N}}\cdotrac{\sigma}{\sqrt{n}}$.	
	iv)	The	term 1- β is called			
		a)	level of significance	b)	power of the test	
		c)	size of the test	d)	none of these.	
	V)	If th co-e	e two co-efficients of regression fficient of correlation is	on are	0.8 and 0.2 , then the value of 0.8	alue of the
		a)	0.16	b)	- 0.16	
		c)	0.40	d)	- 0.40.	

4

			\sim
vi)	Value of <i>c</i> for which $f(x) = cx$ for $x = 0$ other	x = 0, 1, 2, 3, 4, 5 erwise becomes a p.m.f. is	
	a) 7/15	b) 1/15	
	c) 2/15	d) 4/15.	
vii)	The maximum and the minimum v	alues of the correlation coefficient are	
	a) 1, 0	b) 2, 1	
	c) 0, – 1	d) 1, – 1.	
viii)	If X has a binomial distribution with	h parameters n and p , then its mean is	
	a) <i>np</i>	b) <i>n</i> + <i>p</i>	
	c) 1	d) $np (1-p).$	
ix)	If X_i ($i = 1, 2,, n$) are ind	lependent Poisson variates with para	meter
	$\lambda_i (i = 1, 2,, n)$ respectively,	then $\sum_{i=1}^{n} X_i$ is also a Poisson variate	with
	parameter	<i>i</i> = 1	
	n	n	
	a) $\sum_{i=1}^{\infty} \lambda_i^2$	b) $\sum_{i=1}^{\infty} \frac{\lambda_i}{n^2}$	
	c) $\sum_{i=1}^{n} \lambda_i$	d) λ_i .	
X)	If X_1, X_2, X_3, X_4 be 4 inc	lependent normal variates with m	ieans
	μ_i (i = 1, 2, 3, 4) and variances	σ_{i}^{2} (<i>i</i> = 1, 2, 3, 4), then $\sum_{i=1}^{4} \left(\frac{X_{i} - \mu_{i}}{\sigma_{i}} \right)^{2}$	is a
	$\chi^2\text{-}$ variate with degrees of freedom		
	a) 4	b) 3	
	c) 2	d) 5.	
xi)	If 'r' is the observed correlation conformed from a bivariate normal population the correlation coefficient is defined	efficient in a sample of <i>n</i> pairs of observa 1, then <i>t</i> -statistic for testing the significan 1 as	itions ice of
	a) $\frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$ with $(n-2)$ d.f.	b) $\frac{r\sqrt{n}}{\sqrt{1-r^2}}$ with <i>n</i> d.f.	
	c) $\frac{r\sqrt{n-1}}{\sqrt{n-1}}$ with $(n-1)$ d.f.	d) none of these.	

c)
$$\frac{r\sqrt{n-1}}{\sqrt{1-r^2}}$$
 with $(n-1)$ d.f. d) none of these.

5

b)

xii) 95% confidence limits for population mean (μ) are

a)
$$\overline{X} \pm 1.96 \frac{\sigma}{\sqrt{n}}$$

c)
$$\overline{X} \pm 1.645 \frac{\sigma^2}{\sqrt{n}}$$
 d) $\overline{X} \pm 2$

xiii) If 3 dice are thrown at once, then the total number of cases are

c) 216 d) 0.

xiv) If P(A) = 1/3, P(B) = 1/9, $P(A \cup B) = 1/6$, then the value of $P(A \cap B)$ is

a)	4/9	b)	5/18

c) 5/6 d) 1.

GROUP – B

(Short Answer Type Questions)

Answer any *three* of the following questions. $3 \times 5 = 15$

 $\overline{X} \pm 2.57$

- 2. Distinguish between sampling error and non-sampling error.
- 3. What are the uses of χ^2 distribution ?
- 4. A random sample of size 100 has mean 15, the population variance being 25. Find the interval estimate of the population mean with a confidence level of 99%.
- 5. The scores obtained by students of a class follows a uniform distribution with 100 as maximum and 60 as minimum. Find the mean and standard deviation of scores.
- 6. *X* is a discrete random variate having probability mass function :

<i>x</i> :	0	1	2	3	4	5	6	7
f(x):	0	k	2k	2k	2k	k^2	$2k^2$	$7k^2 + k$

i) Determine the constant k.

ii) Find P [X < 6].

7. Fit a straight line trend equation by the method of least squares and estimate the value for 2011.

101 2011.								
Year :	1995	1996	1997	1998	1999	2000	2001	2002
						A Parent (Y Enrolidy Init		
Value :	380	400	650	720	690	600	870	930

GROUP – C

(Long Answer Type Questions)

Answer any *three* of the following questions. $3 \times 15 = 45$

8. a) Fit a parabolic trend to the following data and hence estimate the sales values for years 2009 and 2010.

Year :	2001	2002	2003	2004	2005
Sales :	32	17	10	11	20

- b) In a box containing 100 transistors, 20 are known to be defective. If any five are chosen at random, what is the probability that
 - i) all are defective
 - ii) only one is defective
 - iii) at least one is defective ? 9 + 6
- a) A sample of 1000 dry cell batteries were tested to find mean life time. They showed a mean life of 120 hours and standard deviation of 30 hours.

Assuming normal distribution, find the number of cells expected to have a life of

- i) less than 60 hours.
- ii) more than 150 hours.
- iii) between 100 and 140 hours.
- b) Assuming that height distribution of a group of men follows normal distribution, find the mean and standard deviation of heights if 84% of men have heights less than 65.2 inches and 68% have heights lying between 65.2 and 62.8 inches.
- c) Show that sample variance is a biased estimator of population variance. 5 + 6 + 4

51002 (27/05) (O)

6

- b) Define the following :
 - i) Null and alternative hypotheses
 - ii) Type I and Type II errors
 - iii) Critical region.

Occupation

- c) A manager wants to find the expected time to finish a job, whose standard deviation is 5 days. What sample size should he choose to estimate mean time with 99% confidence with a permissible error of 2 days? 5 + 5 + 5
- 11. a) A random sample of 16 students of one college scored on an average 85 marks with a standard deviation of 5. 20 students of the same subject of a different college scored 30 average marks with a standard deviation of 8. Can it be considered that the students of the college are equally competent ?
 - b) To determine the viewing pattern of a particular TV programme, a market research company conducted a survey among different viewers. The following results were obtained :

No. of viewers who liked it

Businessman	30
Professional	22
Salaried	35
Student	38
Retired	25

Can it be concluded from the data that opinion depends on profession ? [$\chi^2_{0.054} = 9.49$]

8

c) The score of two renowned cricketers in 10 innings, not necessarily following normal distribution is given below :

Tendulkar :	85	2	105	52	150	0 187 95	102	20
Lara	215	0	85	132	55	90 4 6	25	100

Are their mean scores equal ? [U(10, 10) at 5% = 23] 5 + 4 + 6

12. a) An advertising agency tried to determine the impact of a certain advertisement among different groups of students. They carried out a survey and the following figures were obtained :

Age group	High School (15 - 18 yrs.)	Under-graduate (19 - 22 yrs.)	Post-graduate (23 - 25 yrs.)
Liked	50	10	20
Did not like	42	12	26

Can it be concluded that opinion is related to age group ? $(\chi^2_{0.05,2} = 5.99)$

b) The following are the sales figures (in thousands each month) of three different insurance companies. Assuming sales figures follow normal distribution, test whether the mean sales are the same for the three companies :

Co. A-65, 68, 64, 70, 71, 75

Co. B-73, 68, 73, 69, 64

Co. C-64, 64, 66, 69

[F at 5% for 2, 12 d.f. = 6.93]

13. a) A salesman is expected to affect an average sale of Rs. 3,500. A sample test

revealed that a particular salesman had made the following sales :

3,700, 3,400, 2,500, 5,200, 3,000 & 2,000.

Using 5% level of significance conclude whether his work is below standard or not (Given the value of *t* at 5%, 5 degrees of freedom is 2.015).

51002 (27/05) (O)

7 + 8

b) The following data shows the I.Q. of 5 workers before & after training.

I.Q. before training	110	120		125
I.Q. after training	120	118	125 136	121

Test whether there is any change in I.Q. after training

(Given that $t_{0.01} = 4.6$ for 4 d.f.)

c) Two types of batteries are tested for their lengths of life & the following data are obtained :

	No. of samples	Mean life	Variance
Туре М	9	600 hrs.	121 hrs.
Type N	8	640 hrs.	144 hrs.

Is there any significant difference in the two means ? Value of t for 15 d.f. at 5% level is $2 \cdot 131$. 5 + 5 + 5

- 14. a) In a random sample of 600 & 1000 men from two cities 400 & 600 men are found to be literate. Do the data indicate at 5% level of significance that the populations are significantly different in the percentage of literacy ?
 - b) A fertilizer mixing machine is set to give 12 kg of nitrate for every quantity bag of fertilizer. Ten 100 kg bags are examined. The percentages of nitrate are as follows :

11, 14, 13, 12, 13, 12, 13, 14, 11 and 12.

Is there reason to believe that the machine is defective ? (Value of t for 9 d.f. is 2.262).

c) The mean time required to complete a certain job so that he may be 95% confident that the mean may remain within 2 days of the true mean. Population S.D is 8. How large was the sample? 5 + 5 + 5

END