Name:
Roll No. :
Inviailator's Sianature :

CS/B.Tech (ME/PE)/SEM-8/ME-807/2011

2011

FINITE ELEMENT METHODS & ITS APPLICATION

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks

Candidates are required to give their answers in their own words

as far as practicable.

GROUP A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following: $10 \times 1 = 10$

i) $f(\eta) = \eta^2 + 2\eta + 1$ T e value of $\int_{-1}^{+1} f(\eta) d\eta$ by two-point

method is

a) 20

b) 1.667

c) 2 667

- d) none of these.
- ii) The ircular cylinder with longer length will be treated for 2-D case as
 - a) plane stress
 - b) plane strain
 - c) either plane stress or plain strain
 - d) none of these.
- iii) Suitable shape function for the element is selected
 - a) on the basis of variation of sides of elements
 - b) one the variation of area of element
 - c) strain field.

8117 [Turn over

www.makaut.com

CS/B.Tech (ME/PE)/SEM-8/ME-807/2011

- iv) Finite element can be applied to the problems of
 - a) Solid mechanics
- b) Fluid mechanics
- c) Thermal science
- d) all of these.
- v) $\sigma = a_0 + b\phi + c\xi$ is the deformation in ϕ - ξ plane in case of
 - a) constant strain field
 - b) linearly varying strain field
 - c) parabolic variation of strain field
 - d) cubic variation of strain field.
- vi) Eigenvalue problem is suitable for
 - a) steady fluid flow problems
 - b) mechanical vibration analysis
 - c) temperature field problems
 - d) stress field probl ms.
- vii) Solution of FEM is found by
 - a) Matr x inversion method
 - b) Gauss elimination method
 - c Gauss-Seidel method
 - d) All of these.
- viii) Stiffness matrix is
 - a) symmetrical about top left to bottom right diagonal
 - b) antisymmetric
 - c) symmetrical about top right to bottom left diagonal
 - d) none of these.

8117 2

CS/B.Tech (ME/PE)/SEM-8/ME-807/2011

- ix) Convenient way of using numerical integration in FEM
 - a) Gaussian quadrature formula
 - Newton-costes quadrature b)
 - Simpson's rule c)
 - d) Trapezoidal rule.
- For quadrilateral element the dimension of element X) stiffness matrix is
 - a) 4×4

b) 2×4

c) 8×8 d) 4×8 .

GROUP - B (Short Answer Type Questio s)

Answer any three of the foll wing.

 $3 \times 5 = 15$

- What is finite element method? Write down some 2. applications of FEM.
- Write down the steps of FEM. 3.
- What do you mean by s iffness and rigidity matrices? 4.
- 5. Discuss some preprocessor and post-processor on finite element.
- 6. What is the Rayleigh-Ritz method?

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. Derive a stiffness matrix by classical method of a bar or truss element.
- 8. Derive a stiffness matrix of a bar element by generalized method.
- Find out the stiffness matrix of beam element by generalized 9. method.

8117

3

[Turn over

CS/B.Tech (ME/PE)/SEM-8/ME-807/2011

10. A three bar truss is shown in figure. All bars have the same length l and axial rigidity EA. Determine the displacement of node 1 and node 2.

11. A bridge is supported by several concrete piers and the geometry of the pier is shown below. The load $20 \mathrm{kN/m^2}$ on the pier represents the collective weight of the bridge and an assumed distribution of the traffic load on the bridge. The concrete weighs approximately $25 \mathrm{kN/m^3}$ and its modulus is $\mathrm{E} = 28 \times 10^6 \ \mathrm{kN/m^2}$ Analyze the displacement and stresses with the help of FEM. (consider one element and assume the interpolators as linear functions $\psi_1(x) = (1-x)$ and $\psi_2(x) = (1-x)$.

