Name:
Roll No. :
Inviailator's Sianature :

FINITE ELEMENT METHODS AND ITS APPLICATION

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP – A

(Multiple Choice Type Questions)

1. Choose the correct alternati es for the following:

 $10 \times 1 = 10$

- i) Isoparametric element is one in which
 - a) geome ry of the element is described by a parameter
 - b) displacement of the element is described by another parameter
 - c) both geometry & displacement of element are described by same parameter
 - d) none of these.

8117 [Turn over

- ii) The circular cylinder with longer length will be teated for 2-D case as
 - a) plane stress
 - b) plane strain
 - c) either plane stress or plane strain
 - d) none of these.
- iii) In finite difference method, the first order derivative has approximation in order of (Δx) 2 as

a)
$$\left(\frac{\partial u}{\partial x}\right)_{i,j} = \frac{u_{i+1,j} - u_{i,j}}{\Delta x}$$

b)
$$\left(\frac{\partial u}{\partial x}\right)_{i,j} = \frac{u_{i,j} - u_{i-1,j}}{\Delta x}$$

c)
$$\left(\frac{\partial u}{\partial x}\right)_{i,j} = \frac{u_{i+1,j} - u_{i-1,j}}{2 \Delta x}$$

- d) none of th se
- iv) Which one is no re ated to FEM?
 - a) Crank Nicolson method
 - b) Variat onal method
 - c) Galerkin method
 - d) Banded symmetric metrix.
- v) $U = a_0 + bx + cy$ is the deformation filled in case of
 - a) constant strain field
 - b) linearly varying strain field
 - c) parabolic variation of strain field
 - d) cubic variation of stain field.

A differetial equation is given by

$$A \frac{\partial^2 \phi}{\partial x^2} + B \frac{\partial^2 \phi}{\partial x \partial y} + C \frac{\partial^2 \phi}{\partial y^2} = 0.$$

The condition for the equation to be hyperbolic one is

- a) $B^2 4AC > 0$ b) $B^2 4AC = 0$
- c) $B^2 4AC < 0$ d) none of these.
- vii) $f(\xi) = \xi^2 + 2\xi + 1$. The value of $\int_0^1 f(\xi) d\xi$ by two

point method is

a) $2 \cdot 0$

b) 1.667

2.667c)

- d) none of these.
- viii) For quadrilateral element the dimension of element stiffness matrix is
 - a) $4 \propto 4$

b) $2 \propto 4$

8 ∞ 8

- d) 4×8 .
- Eigenvalue problem is suitable for ix)
 - a) steady fluid flow problems
 - b) mechanical vibration analysis
 - c) stress field problems
 - d) temperature field problems.

x) Von Mises stress is given by the equation

a)
$$\sigma_{VM} = \frac{1}{\sqrt{3}} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right]^{1/2}$$

b)
$$\sigma_{VM} = \frac{1}{\sqrt{2}} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right]^{1/2}$$

c)
$$\sigma_{VM} = \frac{1}{2} \left(\sigma_1 - \sigma_3 \right)$$

d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following $3 \times 5 = 15$

2. A light weight beam of length L is clamped at both ends and subjected to load w (x) per unit length. If R = EI is the flexural rigidity of the beam the defection ϕ is given by the solution of

$$\frac{\mathrm{d}^{2}}{\mathrm{d}x^{2}}\left[R\left(x\right)\frac{\mathrm{d}^{2}\phi}{\mathrm{d}x^{2}}\right]=w\left(x\right)\quad0\leq x\leq L$$

$$\phi = \frac{d\phi}{dx} = 0$$
 a $x = 0$ and at $x = L$

Construct the functional for this specified problem.

3. Write the finite difference equation (using central differencing scheme) for the temperature flow field expressed by equation

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0.$$

8117

4. Write down the minimum Potential Energy Theorem.

Considering linear shape function, prove the element stiffness matrix

$$[K^e] = \frac{E_e A_e}{L_e} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

for one-dimensional problem, \boldsymbol{E}_e , \boldsymbol{A}_e and \boldsymbol{L}_e represent Young's muldulus, area and length of the element resprectively.

5.

Dia.

Consider the truss elements as shown in figure. The x, y co-ordinates of the two nodes are indicated in figure. If $q = [15, 10, 2.1, 4.3]^T \propto 10^2$ in,

- a) determine the vector q^{I}
- b) determine the K matrix.
- 6. How do you compare finite element method with finite difference method in the context of numerical simulation?

 Explain finite-element discretization.

8117

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. a) Consider the functional I for minimization given by

$$I = \int_{0}^{L} \frac{1}{2} K \left(\frac{dy}{dx} \right)^{2} dx + \frac{1}{2} h (a_{0} - 800)^{2}$$

with y=20 at x=60. Given K=20, h=25 and L=60. Determine a_0 , a_1 and a_2 using the polynomial approximation $y(x)=a_0+a_1x+a_2x^2$ in Rayleigh-Ritz method.

b) If a displacement field is described by

$$u = (-x^{2} + 2y^{2} + 6xy) \propto 10^{-4}$$

$$v = (3x + 6y - y^{2}) \propto 10^{-4},$$
determine Σ_{x} , Σ_{y} , γ_{xy} at the point $x = 1$, $y = 0$.

8. a)

Dia.

$$E = 200 \text{ GPa}$$

 $f = 77 \text{ kN/m}^3$

The bar has unit thickness. Find the deflection at the free end under its own weight using division of 1 element and 2 elements. Compare the results with exact solution.

8117 6

b)	Stress and	strain	vectors	are	related	by the	equation
	$\sigma = D \Sigma$	Ξ					

Find *D* for plane stress problem.

3

- 9. a) Find the element stiffness matrix for four noded quadrilateral. All definitions of matrix should be clearly written and derived.
 - b) Write down the Helmholtz equation. For what type of problems is this equation used?
- 10. A composite wall consists of three materials, as shown in the figure. The outer temperature is $T_o = 20^{\circ}\text{C}$. Convective heat transfer takes place on the inner surface of the wall with $T_{\alpha} = 800^{\circ}\text{C}$ and $h = 25 \text{ w/m}^2$ °C. Determine he temperature distribution in the wall. Compare with analy ical results.

Dia.

11.	a)	a) Discuss different steps in finite element method							
	b)	Name a few commercial FEM packages.							
	c)	Define isoparametric elements.							
	d) State the role of post-processor in FEM.								
	e)	Write Euler-Lagrange equation for functional of	of	one					
		variable.		3					