

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: ME-601

INTERNAL COMBUSTION ENGINES & GAS TURBINES

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

Choose the correct alternatives for the following :

 $10 \times 1 = 10$

- The ratio of work done per cycle to the swept volume in case of IC engine is called
 - a) compression index
 - b) compression ratio
 - c) compressor efficiency
 - d) mean effective pressure.

CS/B.TECH/ME/PE/EVEN/SEM-6/ME-601/2015-16

- ii) A heat engine is supplied heat at the rate of 30000 J/s and gives an output of 9 kW. The thermal efficiency of engine will be
 - a) 30%

b) 33%

c) 40%

- d) none of these.
- iii) The term 'scavenging' is generally associated with
 - a) 2-stroke cycle engine
 - b) 4-stroke cycle engine
 - c) aeroplane engine
 - d) high efficiency engines.
- (v) The fuel catane
 - a) has zero cetane number
 - b) has 100 cetane number
 - c) helps detonation
 - d) is a straight chain paraffin
 - e) both (b) and (d).
- v) For same power and same speed, the flywheel of a 4-stroke engine as compared to 2-stroke engine will be
 - a) smaller
 - b) bigger
 - c) same size
 - d) depend on other engine parameters.

- vi) In a four-stroke IC engine cam shaft rotates at
 - a) same speed as crankshaft
 - twice the speed of crankshaft
 - c) half the speed of crankshaft
 - d) none of these.
- vii) Engines used for ships are normally
 - a) four-stroke SI engines of very high power
 - b) two-stroke SI engines of very high power
 - c) four-stroke CI engines of very high power
 - d) two-stroke CI engines of very high power.
- viii) The advancing of spark timing in S.I. engine will
 - a) reduce knocking tendency
 - b) increase knocking tendency
 - c) not have any effect
 - d) none of these.
- ix) The thermal efficiency of closed cycle Gas turbine plant increases by
 - a) reheating
- b) inter-cooling
- c) regenerator
- d) all of these.
- Major application of gas turbines is for
 - a) Aircraft

- b) Locomotive
- c) Automobiles
- d) all of these.

CS/B.TECH/ME/PE/EVEN/SEM-6/ME-601/2015-16

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. $3 \times 5 = 15$

- a) Define effectiveness of a regenerator.
 - b) What is the effect of irreversibilities in Turbine and Compressor? 2+3
- 3. Derive the expression of optimum pressure ratio for maximum work output in an ideal Brayton cycle. What is the corresponding cycle efficiency?
- Define volumetric efficiency. Explain how it is important related to the performance of IC engines. Mention the factors that affect volumetric efficiency.
- 5. What is supercharging ? What is objective of supercharging ? Draw the p-v diagram of supercharged engine.
 2+2+1
- 6. Explain with sketches the working of a 2-stroke engine.
 What is scavenging?
 3 + 2

6/60118

3

Turn over

6/60118

4

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- a) The bore and stroke of a water cooled vertical single cylinder, four stroke diesel engine are 80 mm and 110 mm respectively and the torque developed is 23.5 Nm. Calculate the brake mean effective pressure.
 - b) Air enters the compressor of a gas turbine plant operating on Brayton cycle at 1 bar pressure and 300 K temperature. The pressure ratio is 5 and the maximum cycle temperature is related to 1075 K. If the compressor and turbine efficiencies are 80% and 85% respectively calculate net work output, cycle efficiency and work ratio.
 - Explain the various factors that influence the flame speed.
 4 + 8 + 3
- 8. a) A four-cylinder four-stroke engine having diameter and length of stroke as 100 mm and 120 mm respectively and is running at 1800 RPM. Its carburetor venture has a 28 mm throat. Assuming co-efficient of air flow 0.8, the density of air is 1.2 kg/m³ and volumetric efficiency as 0.75, determine the suction of the throat.

CS/B.TECH/ME/PE/EVEN/SEM-6/ME-601/2015-16

b) An unknown hydrocarbon fuel C_xH_y was allowed to react with air. An analysis was made of a representative sample of the product gases with the following result: CO₂ 12·1%, O₂ 3·8%, CO 0·9%.

Determine -

- i) the chemical equation for the actual reaction
- ii) the composition of the fuel
- iii) the air-fuel ratio during the test
- iv) the excess or deficiency of air used. 7 + 8
- a) Briefly explain the stages of combustion in SI engine elaborating the flame front propagation.
 - b) Write short notes on any two of the following: 2×5
 - i) Dissociation
 - ii) Fuel-air cycle
 - iii) Battery ignition system
 - iv) Magneto-ignition system.
- 10. a) Derive the efficiency of Brayton cycle.
 - b) In a closed cycle gas turbine the following data apply:

Working substance = Air, $C_p = 1 \text{ kJ/kg-K}$, Ambient temperature = 27°C, Top temperature = 823°C, Pressure at compressor inlet = 1 bar, Pressure ratio = 4, Compression ratio = 80%,

HTTP://WWW.MAKAUT.COM

6/60118

5

[Turn over

Turbine efficiency = 85%, Heating value of fuel = 41800 kJ/kg. Heater loss = 10% of the heating value. Find the following:

- i) Compression work
- ii) Heat supplied
- iii) Turbine work
- iv) Thermal efficiency
- v) Air : Fuel ratio.

6 + 9

- 11. a) Describe D-MPFI and L-MPFI injection systems.
 - b) Clearly explain the various wet sump lubrication system. 7 + 8