CS/B.TECH/ME/EVEN/SEM-6/ME-604 A/2015-16

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL Paper Code: ME-604 A

AIR CONDITIONING AND REFRIGERATION

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

Choose the correct alternatives for the following:

 $10 \times 1 = 10$

- i) The ozone-friendly refrigerant R-134a contain
 - a) One chlorine atom
-) Two chlorine atom
- c) Four chlorine atom d)
- d) No chlorine atom.
- ii) If the wet bulb depression is zero, then the relative humidity is equal to
 - a) Zero

b) 50%

c) 70%

d) 100%.

Turn over

CS/B.TECH/ME/EVEN/SEM-6/ME-604 A/2015-16

- iii) Where does the highest temperature of refrigerant occurs in vapour compression refrigeration system?
 - a) In evaporator
 - b) Before expansion valve
 - Between compressor and condenser
 - d) Between compressor and evaporator.
- iv) The refrigerant R-22 stands for
 - a) Ammonia

- b) Carbon Dioxide
- c) Methyl chloride
- d) Methane.
- v) While designing the refrigeration system of an aircraft prime consideration is that the
 - Weight of refrigerant circulated in the system is low
 - b) Weight of the refrigeration equipment is low
 - c) System has high COP
 - d) Work consumption per ton of refrigeration is low.
- vi) In a vapour compression refrigeration plant in a vapour compression refrigeration plant the refrigerant leaves the evaporator with the enthalpy of 195 kJ/kg and condenser with 65 kJ/kg. for every kg of refrigerant the plant can supply per second, a cooling load of
 - a) 70 kW

b) 100 kW

c) 130 kW

d) 160 kW.

6/60439

2

CS/B.TECH/ME/EVEN/SEM-6/ME-604 A/2015-16

- vu) A refrigerator works on reversed Carnot cycle producing a temperature of - 40°C. Work done per TR is 700 kJ per ten minutes. What is the value of its COP?
 - (1)

b) 4.5

5.8 C)

- d) 7:
- viii) The values of enthalpy at the beginning of compression, at the end of compression and at the end of condensation are 185 kJ/kg. 210 kJ/kg and 85 kJ/kg respectively. What is the value of the COP of the vapour compression refrigeration system?
 - 0.25

b) 5.4

c)

- d) 1.35.
- Cooling towers generally employs which of the following?
 - Single speed fan drive
 - Two speed fan drives
 - Multi-speed fan drives in steps
 - None of these.
- The condensation of moisture contained in air will take place at
 - Dew point temperature
 - Dry bulb temperature
 - Wet bulb temperature
 - Any of these.

1 Turn over

CS/B.TECH/ME/EVEN/SEM-6/ME-604 A/2015-16

GROUP - B

(Short Answer Type Questions)

Answer any three of the following $3 \times 5 = 15$

- Describe the effect of changes in evaporation pressure and condenser pressure on the performance of a simple vapour compression refrigeration system.
- Show that the work of reciprocating compressor considering the effect of clearance violume is

$$W = \frac{n}{n-1} P_1 (V_1 - V_4) \left[\left(\frac{P_2}{P_1} \right)^{\frac{n-1}{n}} - 1 \right]$$

where all terms of the expression have their usual meaning.

- $1m^3$ of a ges is compressed adiabatically ($\gamma = 1.4$) from 1 bar to 5 bar in a reciprocating compressor with 8 per cent clearance, if the exponent of the reexpansion curve is 1.1 instead of 1.4, find the percentage increase in the work of compression.
- The humidity ratio of atmospheric air at 27.5°C is 0.016 kg/kg of dry air. Assuming the standard barometric pressure of 760 mm of Hg, determine the following:
 - Partial pressure of water vapour
 - Dew point temperature
 - Relative humidity.
- Explain with a neat sketch of Air-Conditioning 6. cycle.
 - Define Sensible heating factor.

4 + 1

3

CS/B/TECH/ME/EVEN/SEM-6/ME-604 A/2015-16

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- a) Derive an expression for COP of an ideal vapour absorption system in terms of T_G, T_E and T_C.
 - where, T_G = Temperature at which heat (Q_G) is supplied to generator.
 - T_E = Temperature at which heat (G_E) is absorbed in the evaporator, and
 - T_C = Temperature at which heat (Q_C) is discharge from condenser and absorber.
 - b) What is the function of shaft seal in a refrigerant compressor? Explain why reciprocating compressor cannot be used as a vacuum pump for producing high vaccum.
 - e) Explain the actual vapour compression system on p-h chart clearly showing the typical variation from theoretical system.
 6 + 4 + 5
- 8. a) Derive an expression for the equivalent dia of circular duct corresponding to a rectangular duct of sides a and b for the same pressure loss per unit length when the velocity of air flowing through both the ducts is the same.
 - Explain static regain method of duct design for air conditioning

5

CS/B.TECH/ME/EVEN/SEM-6/ME-604 A/2015-16

- c) A 30 m long rectangular duct 20 mm × 160 mm in size carries standard air at the rate of 24 m³/min. Assuming the friction factor f = 0.0048, determine
 - total pressure required at the inlet to the duct to maintain this flow; and
 - ii) air power required.

5 + 3 + 7

- a) Derive an expression for clearance volumetric efficiency of a reciprocating compressor.
 - b) What is a condenser? State the function of a condenser in a refrigeration system. What are the three main requirements which an evaporator must fulfil? How is capacity of an evaporator defined?

7 + 8

- a) Obtain an expression for thermodynamic wet bulb temperature.
 - b) Moist air enters a chamber at 5°C DBT and 25°C WBT (wet bulb temperature) at a rate of 90 m³/min. The pressure is 1 atmospheric. While passing through the chamber, the air absorbs sensible heat at the rate of 40.7 kW and picks up 40 kg/hr of saturated steam at 110°C. Determine the DBT and WBT of the leaving air. 7 + 8

CS/B.TECH/ME/EVEN/SEM-6/ME 604 A/2015-16

- 11. и) Compare the performance of reciprocating and centrifugal refrigeration compressors.
 - Explain briefly Static pressure and total pressure in a Duct system.
 - c) 400 m³/min of recirculated air at 22°C DBT and 10°C DPT is to mixed with 150 m³/min of fresh air at 30° DBT and 50% RH. Determine the enthalpy, specific volume, humidity ratio and dew point temperature of the mixture.