Tame :	
oll No. :	
nvigilator's Signature :	

2012 MECHANISMS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following:

 $10 \times 1 = 10$

- i) The cam and follower constitute a
 - a) Higher pair
- b) Lower pair
- c) Helical pair
- d) Spiral pair.
- ii) Two parallel shafts, the distance between whose axes is small and variable, are connected by
 - a) Clutch arrangement
- b) Oldham's coupling
- c) Hooke's joints
- d) Universal coupling.
- iii) If n links are connected at the same joint, the joint is equivalent to
 - a) (n-1) binary joints
- b) (n-2) binary joints
- c) (2n-1) binary joints
- d) None of these.

4359 [Turn over

www.makaut.com

CS/B.TECH(NEW)/ME/PE/AUE/SEM-4/ME-402/2012

- iv) Which of the fallowing mechanisms is used to enlarge or reduce the size of drawing?
 - a) Grasshopper mechanism
 - b) Pantograph
 - c) Hart's mechanism
 - d) Watt's mechanism.
- v) The motion of circular rod in a circula hol is an example of
 - a) successfully constrained motion
 - b) completely constrained mot on
 - c) incompletely constra ned m tion
 - d) partially constrained motion.
- vi) The locus of instantaneous centre of a moving body relative to a fix d body is known as the
 - a) space centr de
- b) body centrode
- c) moving centrode
- d) none of these.
- vii) Angular ac eleration of a link AB is given by
 - a) centripetal acceleration/length of AB
 - b) tangential acceleration/length of AB
 - c) total acceleration/length of AB
 - d) centrifugal acceleration/length of AB.
- viii) The point on the cam with the maximum pressure angle is known as the
 - a) cam centre
- b) pitch point
- c) trace point
- d) prime point.

4359

www.makaut.com

ix) A differential gear in automobile is used to

a) reduce speed

CS/B.TECH(NEW)/ME/PE/AUE/SEM-4/ME-402/2012

	b)	assist in changing s	speed			
	c)	provide jerk-free mo	ovement	of vehicle		
	d)	help in turning.				
x)	The	mechanism used in	a shapir	ng machine is		
	a)	a) a closed 4-bar chain having 4 revolute pairs				
	b)	a closed 6-bar chain having 6 revolut pairs				
	c)	a closed 4-bar cha 2 prismatic pairs	in havir	ng 2 revolute pairs and		
	d)	an inversion of sing	;l slider	crank mechanism.		
xi)	The	The contact ratio of gears is always				
	a)	more than 1	b)	1		
	c)	less than 1	d)	zero.		
xii)	The	e minimum number o	of teeth i	in rack and pinion for a		
	20°	pair angle teeth is				
	a)	20	b)	18		
	c)	22	d)	24.		
xiii) If th	ne axes of the first an	d last ge	ears of a compound gea:		
	trai	n are co-axial, the ge	ar train	is known as		
	a)	simple	b)	epicyclic		
	c)	reverted	d)	compound.		
4359		3		[Turn ove		

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

2. Determine the Degree of Freedom of the kinematic linkage shown in Fig.-1.

Figur -1

3. Determine the movability f the mechanisms in Fig.-2 by Grashof's criterion (umbers indicate the respective link length in mm).

Figure-2

- 4. State the Aronhold Kennedy theorem of three-centre.
- 5. With a suitable diagram differentiate the Davis steering gear mechanism with Ackermann steering gear mechanism.
- 6. Drive the condition for maximum power transmission by a belt drive considering the effect of centrifugal tension.
- 7. Derive a relation for minimum number of teeth on the gear wheel and the pinion to avoid interference.

4359

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 8. a) Two gear wheels mesh externally and are to give a velocity ratio of 3 to 1. The teeth are of involute form; module = 6 mm, addendum = one module, pressure angle = 20°. The pinion rotates at 90 r.p.m. De ermine:
 - i) The No. of teeth on the pinion to avoid interference on it and the corresponding number of teeth on the wheel
 - ii) The length of path and arc f contact
 - iii) The number of pairs of teeth in contact
 - iv) The maximum velocity of sliding.
 - b) In a reverted epicycli gear train, the arm A carries two gears B and C and a compound gear D E. The gear B meshes with gear E and the gear C meshes with gear D. The number of teeth on gears B, C and D are 75, 30 and 90 respectively. Find the speed and direction of gear C when gear B is fixed and the arm A makes 100 r.p.m. clockwise.
- 9. Draw a cam profile to drive an oscillating roller follower to the specification given below:
 - i) Follower to move outwards through an angular displacement of 20° during the first 120° rotation of the cam:
 - ii) Follower to return to its initial position during next 120° rotation of the cam;

- iii) Follower to dwell during the next 120° of cam rotation.

 The distance between pivot centre and roller centre = 120 mm; distance between pivot centre and cam axis = 130 mm; minimum radius of cam = 40 mm; radius of roller = 10mm; inward and outward strokes take place with simple harmonic motion constant acceleration and retardation respectively.

 5 + 5 + 5
- 10. In the toggle mechanism, as shown in Fig.-3. The sider D is constrained to move on a horizontal path. The c ank OA is rotating in the counter-clockwise direction at a speed of 180 rpm, increasing at the rate of 50 rad/sec², the dimensions of various links are as follows:

OA = 180 mm, CB = 240 mm, AB = 360 mm and BD = 540 mm. For the given onfiguration, find,

- i) Velocity of slider D
- ii) Angular velocity of links AB, CB and BD
- iii) Acceleration of slider D and angular acceleration of BD
- iv) Velocity of rubbing on the pins of diameter 30 mm at *A* and *D*.

Figure - 3

www.makaut.com

CS/B.TECH(NEW)/ME/PE/AUE/SEM-4/ME-402/2012

- 11. a) What is the significance of degree of freedom of a kinematic chain when it functions as mechanism? Explain Kutzback mobility criterion.
 - b) Show that Devis steering gear mechanism satisfies the condition for correct gearing.
 - c) A crank and slotted lever mechanism used in a shaper has a centre distance of 300 mm between the centers of oscillation of the slotted lever and the c ntre of rotation of the crank. The radius of crank is 120 mm. Find the ratio of time of cutting and time of returning strokes.

5 + 5 + 5

4359 7 Turn over