HTTP://WWW.MAKAUT.COM HTTP://WWW.MAKAUT.COM

C5/B.Tech/(ME/PE/PWE/AUE)-(New)/SEM-3/ME-302/2013-14 2013 STRENGTH OF MATERIALS

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Symbol have usual meanings

GROUP – A

(Multiple Choice Type Questions)

- Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - Which of the following is statically indeterminate structure?
 - a) A load supported on one member
 - b) A load supported on two members
 - c) A load supported on three members
 - d) Either (a) or (b).

3166 (N) Turn over

HTTP://WWW.MAKAUT.COM HTTP://WWW.MAKAUT.COM

CS/B.Tech/(ME/PE/PWE/AUE)-(New)/SEM-3/ME-302/2013-14

- If a composite bar is cooled, then the nature of stress in the part with high coefficient of thermal expansion will be
 - tensile a)

- zero
- c) compressive
- \mathbf{d} none of these
- The bulk modulus of body is equal to
 - $\frac{mE}{3(m-2)}$ b) a)

where $\frac{1}{m} = \mu = \text{Poisson's ratio for the bar material}$,

E =modulus of elasticity of the material.

- When a body is subjected to a direct tensile stress (σ) in one plane, the tangential stress on an oblique section of the body inclined at an angle (θ) to the normal of the section is equal to
 - $\sigma \sin 2\theta$

b) cos 2θ

- c) $\frac{\theta}{2} \sin 2\theta$
- d) $\frac{\sigma}{2} \sin 2\theta$.
- The strain energy stored in a body, when the load is gradually applied, is equal to
 - a) $\frac{(\sigma)}{2E} \times V$ b) $\frac{\sigma}{E} \times V$
 - e) $\frac{\sigma}{2V} \times E$ d) $\frac{\sigma}{V} \times E$
- The BM at the centre of a simply supported beam carrying uniformly distributed load is
 - w.la)

 $wl^2/4$

d) $wl^2/8$

US/B Tech/(ME/PE/PWE/AUE)-(New)/SEM-3/ME-302/2013-14

- vii). The section modulus of a circular section of diameter d 18
 - $\pi d^2/32$
- b) $\pi d^3/32$
- c) $\pi d^3 / 64$ d) $\pi d^4 / 64$
- viii) A square with side a of a beam is subjected to a shearing force of F. The value of the shear stress at the top edge of the section is
 - zero

b) $0.5 F/a^2$

 F/a^2

- d) $1.5 F/a^2$
- A simply supported beam of span l is subjected to a uniformly distributed load w per unit length over the whole span. The maximum deflections at the centre of the beam is
 - $5wl^5$ 48 EI

 $5wl^4$ c) 192 EI

- The strain energy stored in a hollow shaft of external diameter D and internal diameter d when subjected to a shearing stress 'τ' is given by
 - a) $\frac{(D^2 + d^2)\tau^2}{GD}$ b) $\frac{(D^2 + d^2)\tau^2}{4 GD}$
- $\frac{\left(D^2 d^2\right)\tau^2}{GD} \qquad \qquad d) \qquad \frac{\left(D^2 d^2\right)\tau^2}{d}.$
- When a closely coiled spring is subjected to an axial load, it is said to be under
 - bending

b) shear

torsion

- d) all of these
- xii) The design of a thin cylinder shell is based on
 - internal pressure
- diameter of shell
- longitudinal stress
- all of these.

36 (N)

3

Turn over

CS/B Tech/(ME/PE/PWE/AUE)-(New)/SEM-3/ME-302/2013-14

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

- $3 \times 5 = 1$
- A cantilever of length 2 m fails when a load of 2 kN is applied at the free end. If the section of the beam is 40 mm × 40 mm find the stress at the failure.
- 3. a) Draw the stress-strain diagram for a ductile material.
 - b) In the deduction of the relation $T = \theta GJ$, what is the major assumption made?
- A simply supported beam with UVL from zero at one end t w/unit length at other end. Derive the relations of SF an BM and draw the corresponding diagrams.

- 5. A steel column is of length 8 m and diameter 600 mm wit both ends hinged. Determine the crippling load by Euler formula. Take $E = 2.1 \times 10^5 \text{ N/mm}^2$.
- a) Explain the classification of column.
 - b) Write the assumptions made in the Euler's colum theory. 2+

CS/B Tech/(ME/PE/PWE/AUE)-(New)/SEM-3/ME-302/2013-14

The following details refer to the bar as shown:

		:
Portion	Length	Cross-section
AB	600 mm	40 mm × 40 mm
BC	800 mm	30 mm × 30 mm
CD	1000 mm	20 mm × 20 mm

If the load $P_4 = 80$ kN, $P_2 = 60$ kN and $P_3 = 40$ kN, find the extension of the bar, where $E = 2 \times 10^5$ N/mm².

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- With assumptions, derive the bending equation $\frac{M}{I} = \frac{\sigma}{y} = \frac{E}{R}$, where the symbols have their usual meanings.
- b) A square beam 20 mm × 20 mm in section and 2 m long is supported at the ends. The beam fails when a point load of 400 N is applied at the centre of the beam. What uniformly distributed load per m length will break a cantilever of same material 40 mm wide. 60 mm deep and 3 m long?

5

1166 (N)

Turn over

CS/B.Tech/(ME/PE/PWE/AUE)-(New)/SEM-3/ME-302/2013-1

9. a) A composite bar consisting of steel and aluminin components shown in figure, is connected to two graph at the ends at a temperature of 60°C. Find the stress in the two rods, when the temperature falls to 20°C a lift the ends do not yield, cross-sectional areas of the steel and aluminium bars are 250 mm² and 375 mm respectively. Take $E_s = 2 \times 10^5$ N/mm $E_a = 0.70 \times 10^5$ N/mm², $\alpha_s = 1.17 \times 10^{-5}$ /°C are $\alpha_a = 2.34 \times 10^{-5}$ /°C.

b) Draw the Mohr's circle diagrams and show norma tangential and resultant stresses when a member i subjected to two mutually perpendicular principa stresses unequal and alike.

** ** B Tech/(ME/PE/PWE/AUE)-(New)/SEM-3/ME-302/2013-14

Oraw the S.F. and B.M. diagrams for the overhanging beam carrying uniformly distributed load of 2 kN/m over the entire length as shown in following figure. Also locate the point of contraflexure.

- Derive an expression for the critical load in a long column when one end fixed and other end free.
 - b) A mild steel tube 4 m long, 3 cm internal diameter and 4 mm thick is used as a strut with both ends hinged.
 Find the collapsing load. What will be the crippling load
 if
 - i) both ends are built-in?
 - ii) one end is built-in one end is free. 5 + 10

HTTP://WWW.MAKAUT.COM